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Presenter
Presentation Notes
Hello everyone, 

I will be presenting EPI, an efficient pointer integrity scheme to thwart attacks on resource constrained embedded systems. 

EPI is joint work with Mohamed Tarek, myself Miguel Arroyo, Evgeny Manzhosov, Vasilis Kemerlis and Simha Sethumadhavan. 




Embedded systems are everywhere!
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Embedded 
Systems

Presenter
Presentation Notes
Life saving medical devices, drones for package delivery, and robots for manufacturing all make up the world of embedded systems.
These computing devices run many of the infrastructure critical to many aspects of our daily lives...changing the way we interact with the world.




Embedded systems are dominated by 32-bit.
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Over 60% of projects are 
32-bit!
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Presentation Notes
Due to their resource-constrains & cost sensitive nature, 32-bit processors dominate the embedded space by a wide margin.



Why embedded system security is important?
Software has become increasingly complex.
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Source: http://bit.ly/KIB_linescode
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Presentation Notes
The software written for these embedded systems has increasingly been getting more and more complex…
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Source: http://bit.ly/KIB_linescode
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Why embedded system security is important?
Software has become increasingly complex.

Presenter
Presentation Notes
This increased complexity leads to higher bug density and ultimately a larger attack surface.
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Why embedded system security is important?
Software has become increasingly complex.

Heavily utilized software is predominantely 
written in unsafe languages.

Presenter
Presentation Notes
Moreover, upwards of 80% of embedded software is predominantly written in C/C++ due to strict performance and space requirements.
As many are already aware, these language suffer from various memory safety bugs.

For example, overwriting code pointers, such as return addresses and function pointers, allows an attacker to hijack the control-flow of an application and achieve arbitrary code execution.

Moreover, overwriting data pointers can alter an application’s benign behavior without changing its control-flow.

Both control- and data-flow manipulation attacks cause significant damage to the victim system.



Why Memory Safety?
It is the predominant source of vulnerabilities (ie. CVEs).
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Source: Matt Miller, Microsoft Security Response Center (MSRC) - BlueHat 2019
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The reason memory safety is important is that it tends to be the predominant source of vulnerabilities in programs.

While there is no public data for embedded software in particular, it stands to reason that it should follow similar trends as seen in general-purpose software. 
Consider that 70 percent of all the CVEs in Microsoft products EACH YEAR...are memory safety related.




Why Memory Safety?
Memory Safety CVEs are heavily exploited.
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Source: Matt Miller, Microsoft Security Response Center (MSRC) - BlueHat 2019
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But, what makes the issue so PROMINENT is that attackers LOVE memory safety vulnerabilities. 
Data about CVEs EXPLOITED in Microsoft products show that the OVERWHELMING MAJORITY are memory safety related!
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EPI

Presenter
Presentation Notes
This is where EPI comes in as a technique to mitigate memory safety attacks specifically targeting 32-bit systems with minimal runtime overhead.

To be precise, EPI protects program pointers, which represent the main target for memory safety attacks.




Return Address Integrity
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CALL <Foo>

RET

STORE

MemoryProgram

Presenter
Presentation Notes
Let us start with a simple example. 

This program has instructions on the left and memory contents on the right.



Return Address Integrity
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Return Address

CALL <Foo>

RET

STORE

MemoryProgram
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Presentation Notes
When a function is called, the return address (for example, program counter + 4) is typically pushed to memory. 



Return Address Integrity
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Return Address

CALL <Foo>

RET

STORE

MemoryProgram
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Later on, when the function finishes execution, the RETURN instruction loads the return address from memory and jumps to it. In other words, a RETURN address is a *code* pointer.

So, what can go wrong?



Return Address Integrity
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Return Address

CALL <Foo>

RET

STORE

MemoryProgram
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Well, attackers can use a buffer overflow to store their own address to the return address in memory.

Now, when the RET instruction is executed, the program will move to the attacker-controlled address instead of the original program counter + 4. 

This is a well-known attack vector called ROP or return oriented programming.  



Return Address Integrity
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Return Address

CALL <Foo>

RET

STORE

MemoryProgram

Presenter
Presentation Notes
To protect return addresses, we simply tag every return address upon a CALL and verify the tag upon return. 



Return Address Integrity
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Return Address

CALL <Foo>

RET

STORE

MemoryProgram

Presenter
Presentation Notes
If a store instruction is used to overwrite a return address, EPI will reject this instruction to protect the return address.



Return Address Integrity
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Return Address

CALL <Foo>

RET

STORE

MemoryProgram

EPI uses advisory exceptions 
to avoid crashing when under 

attack.
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We also raise an advisory exception to notify the operating system, so it can log the attack for forensics or call the police, … 
without actually crashing the running process.

This way we achieve resilient operation under pointer integrity attacks. 



Code Pointer Integrity
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Function Pointer

CPtrST

CPtrLD

...

MemoryProgram
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Similarly, EPI protects function pointers by using special load and store instructions to access them, CPtrST & CPtrLD. 

For example, function pointers are written to memory by code pointer store instructions…. 



Code Pointer Integrity
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Function Pointer

CPtrST

CPtrLD

...

MemoryProgram
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And are read using code pointer load instructions. 



Code Pointer Integrity
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Function Pointer

CPtrST

CPtrLD

MemoryProgram

STORE
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Presentation Notes
This way regular store instructions (from a buffer overflow for example) CANNOT be used to corrupt function pointers. 



Data Pointer Integrity
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Data Pointer

DPtrST

DPtrLD

...

MemoryProgram

Works in the same way as 
Code Pointer Integrity but 

for data pointers! 

Presenter
Presentation Notes
The same can also be applied to data pointers.

In other words, data pointers are only accessed by data Ptr load and data pointer store instructions.



Cache Line Formats
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EPI

Presenter
Presentation Notes
The question now is: How can EPI keep track of these tag bits in memory?

In other words, how can EPI efficiently identify if a memory word is a return address, code pointer, data pointer, or simply regular data? 

The key insight is to change how data is stored in cache lines 



Cache Line Formats
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Normal
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Let's start with an example. 

We refer to a cache line as normal if it has no code or data pointers at all, like the one shown in the figure. 



Cache Line Formats
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A B C D E

Normal

Pointers
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Now, lets imagine a cache line with three program pointers.



Cache Line Formats
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A B C D E

Normal

bit-vector

Pointers
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In this case, one simple way to identify those pointers is to use two bits of metadata for every normal word (or 8-bytes). 




Cache Line Formats
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bit-vector
Type Bits

Return address 01

Format Encoding Table

Pointers

A B C D E

Normal

Presenter
Presentation Notes
If the memory word is a return address, we set its corresponding metadata bits to 01, 




Cache Line Formats
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bit-vector
Type Bits

Return address 01
Function pointer 10

Format Encoding Table

Pointers

A B C D E

Normal
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if it is a function pointer, we set the metadata bits to 10.



Cache Line Formats
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bit-vector
Type Bits

Return address 01
Function pointer 10
Data pointer 11

Format Encoding Table

Pointers

A B C D E

Normal
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And we set the bits to 11 to mark data pointers. 



Cache Line Formats

28

bit-vector
Type Bits
Regular data 00
Return address 01
Function pointer 10
Data pointer 11

Format Encoding Table

Pointers

A B C D E

Normal
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Finally we use 00 to mark regular non-pointer data.

Of course, all these "state assignments" are arbitrary, and you can use a different one if you want.

This is called BitVector format and It has the benefit of fast lookup, however ...




Cache Line Formats
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bit-vector
Type Bits
Regular data 00
Return address 01
Function pointer 10
Data pointer 11

Format Encoding Table

Pointers

A B C D E

Normal

This introduces a 
6.25% area overhead.
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..., it introduces 6.25% area overhead in the cache. 



Cache Line Formats
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bit-vector

Using a bit-vector throughout the 
memory hierarchy is inefficient! 

Presenter
Presentation Notes
The area overheads of the bit-vector means that it is inefficient to use throughout the memory hierarchy. 

So what do we do elsewhere? 



Cache Line Formats
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With EPI, we encode metadata 
within unused pointer bits.

Presenter
Presentation Notes
In EPI, we store metadata about the program pointers within unused pointer bits!





Cache Line Formats
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A B C D E

Normal

A B C D EHeader

Pointers

With EPI, we encode metadata 
within unused pointer bits.

Encoded

Presenter
Presentation Notes
We simply re-organize the cacheline by first compressing the regular data in one part of the cache line.
Then, we use the other part of the cache line as a header, IN WHICH, we store the addresses of the program pointers using some special encoding.



Cache Line Formats
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A B C D E

Normal

A B C D EY
Is Ptr?

Header

Pointers

With EPI, we encode metadata 
within unused pointer bits.

Encoded

N
Is Ret?
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In order to disambiguate between the specially encoded cache lines and the normal ones, we extend each and every cache line with two additional bits. 



Cache Line Formats
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With EPI, we encode metadata 
within unused pointer bits.
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N
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And is set to 00 for non-encoded ones.




Cache Line Formats
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A B C D E

Normal

A B C D EY
Is Ptr?

Header

Pointers

With EPI, we encode metadata 
within unused pointer bits.

Encoded

N
Is Ret?
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Normal

N
Is Ptr?

N
Is Ret?

Extra bits add 0.39% 
area overhead.
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This way we reduce the area overheads to just 0.39%.

The encoding for the header is described in more detail in the paper.




Pointers

Cache Line Formats
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Normal

2 4 5
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Normal
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Is Ptr?

Header

Encoded

N
Is Ret?
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N
Is Ptr?

N
Is Ret?

A novel variant 
of 

ZeRØ & Califorms

ZeRØ: Zero-Overhead Resilient Operation Under Pointer Integrity Attacks ISCA 2021
Practical Byte-Granular Memory Blacklisting using Califorms MICRO 2019

Presenter
Presentation Notes
In essence, we use a different variant of ZeRO & Califorms for enforcing pointer integrity rules instead of blocking access to program dead bytes. 


https://doi.org/10.1109/ISCA52012.2021.00082
https://doi.org/10.1145/3352460.3358299


Cache Line Formats
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With EPI, we encode metadata 
within unused pointer bits.

What unused 
pointer bits?
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Presentation Notes
The question that may be lingering in the back of your mind is about theunused bits…
WHAT unused pointer bits you may be wondering, after-all this is a 32-bit system!

On 64-bit systems finding unused bits is rather simple as the top 16-bit of all pointers are set to zero anyways.
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Harvesting Unused Pointer Bits

Common software properties allow us 
harvest extra bits from pointers on 32-bit 

architectures. 
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But for 32-bit systems we need to be a bit cleverer. 
EPI leverages common software properties to harvest extra bits from pointers on 32-bit architectures.
Let me explain…



Harvesting Unused Pointer Bits
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… [31][0]

4 Bytes

Regular Data
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We start off with regular data. Data words are 4B bytes wide or 32-bits.



Harvesting Unused Pointer Bits
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… [31][0]

4 Bytes

Regular Data

… [31][0]Return Address

Presenter
Presentation Notes
Return addresses similarly are 32-bits wide.



Harvesting Unused Pointer Bits
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… [31][0]

4 Bytes

Regular Data

… [31][0] [1]Return Address

Fixed-width instructions on RISC architectures allow us 
to harvest the 2 LSBs.
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However, because fixed-width instruction RISC architectures are now the norm on 32-bit systems of today, we can harvest the two least significant bits. 



Harvesting Unused Pointer Bits

42

[31][0] [1]Function Pointer [2] [3] …

… [31][0]Regular Data

… [31][0] [1]Return Address

4 Bytes

Aligning functions (e.g. –falign-functions) 
allows to harvest the 4 LSBs.

Presenter
Presentation Notes
For function pointers we can exploit a similar trick by enforcing function alignment. The number of alignment bytes, affects the least
significant bits of each function pointer. Aligning to 16B allows us to harvest 4 bits in this instance.



Harvesting Unused Pointer Bits

43

[31][0] [1] [30]Function Pointer [2] [3] …

… [31][0]Regular Data

… [31][0] [1] [30]Return Address

4 Bytes

Compacting the code address space allows us to harvest 
2 MSBs.

Presenter
Presentation Notes
On 32-bit architectures, the maximum size of the code address space in virtual memory is 4GB. However, the majority of embedded applications do not use the entire code space. Even for statically linked applications, code size is typically in order of MBs. 

We therefore propose compacting the size of the code address space to 1GB in order to leverage the two most significant bits of code pointers, including return addresses and function pointers. 



Harvesting Unused Pointer Bits
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…Data Pointer Padding Padding

Padding Padding

1B 1B

[31][0] [1] [30]Function Pointer [2] [3] …

… [31][0]Regular Data

… [31][0] [1] [30]Return Address

4 Bytes

Inserting padding bytes allows us to store a per-pointer ID.
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Presentation Notes
Finally, we have data pointers which are trickier to deal with. 

The previous “optimizations” do not apply to data pointers as data items on heap and stack can still use the entire 4GB.
Moreover, data pointers can point to any byte-aligned location.  

As a result, we opt to explicitly insert two padding bytes adjacent to data pointers to save the data-pointer metadata tag and type. 

We’ll quantify the performance overheads of these padding bytes and EPI overall next.



Performance
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EPI
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Let’s now talk about EPI’s performance and how it compares to related work.



EPI Performance Overheads
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Hardware  Modifications

Presenter
Presentation Notes
Performance costs of EPI are mainly attributed to two sources:

The first is the hardware modifications that are needed to implement EPI.



EPI Performance Overheads
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Hardware  Modifications
Our hardware measurements show minimal latency/area/power 
overheads.
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The results of our VLSI implementation showed that our hardware modifications have no impact on the cache access latency and can be totally hidden within the pipeline. 




EPI Performance Overheads
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Hardware  Modifications
Our hardware measurements show minimal latency/area/power 
overheads.

Software Modifications
• Our special load/stores do not change the binary size.

Presenter
Presentation Notes
At the software-level, EPI’s special load and store instructions use the same number of registers as regular loads and stores, basically introducing no changes to the binary size. 




EPI Performance Overheads
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Hardware  Modifications
Our hardware measurements show minimal latency/area/power 
overheads.

Software Modifications
• Our special load/stores do not change the binary size.
• The ClearMeta instructions are only called on memory 

deallocation.
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Presentation Notes
The only exception is the ClearMeta instructions, which are used to clear the metadata bits upon object deallocation. 



EPI Performance Overheads
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Hardware  Modifications
Our hardware measurements show minimal latency/area/power 
overheads.

Software Modifications
• Our special load/stores do not change the binary size.
• The ClearMeta instructions are only called on memory 

deallocation.
• Padding bytes are added to pointers only.

Presenter
Presentation Notes
Finally, there are the padding bytes for function & data pointers we discussed previously.



Performance Results
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Experimental Setup
We use emulate EPI on x86_64 by modifying LLVM to emit 
new instructions.

• ClearMeta is emulated using dummy stores.
• Padding bytes & necessary LD/ST emulate extra memory 

utilization.

Presenter
Presentation Notes
For emulating the effect of these ClearMeta instructions, we use a compiler pass to insert dummy store instructions that write some value to the corresponding upper pointer bits in the cache line.

Padding bytes and the necessary load/stores to emulate accesses to them are inserted to account for the extra memory utilization. 

All our experiments are run on real x86_64 machine. 



Performance Results

52

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Average

N
or

m
. P

er
f.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

N
or

m
. P

er
f.

EPI-Return

0.47%

Presenter
Presentation Notes
EPI-Return provides return address integrity (i.e., backward-edge protection) without any per pointer padding bytes or additional operations while adding 0.47% performance overhead on average (with a maximum of 7% in case of gcc_r).
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53

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Average

N
or

m
. P

er
f.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

N
or

m
. P

er
f.

EPI-Return EPI-Full

0.88%

Presenter
Presentation Notes
On the other hand, EPI-Full represents our full pointer integrity protection, including return addresses, function pointers, and data pointers. The results show that EPI-Full introduces 0:88% performance overheads on average with a maximum of 8%.



Performance Results
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In addition to our EPI configurations, we evaluate a 32-bit variant of ARM’s pointer authentication technique. 

As ARM’s PAC is only available for 64-bit processors in certain Apple devices, we use the same emulation methodology adopted by prior work [27], [40] to estimate the performance overheads of ARM’s PAC on a real machine. 

Specifically, we modify the compiler to emit four XOR instructions to account for the 4 cycle latency introduced by the PAC instructions.

Additionally, we insert two padding bytes per pointer to emulate the overheads of explicitly storing a 16-bit message authentication code (MAC) per each 32-bit pointer.

PAC-Return emulates the overheads of signing and authenticating return addresses on the stack.



Performance Results
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PAC-Full emulates the overheads of applying ARM’s PAC to its full-extent (i.e., protecting return addresses, function
pointers, and data pointers).



Performance Results
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PAC’s overheads are attributed to the extra QARMA 
encryption invocations upon pointer: 

• loads/stores
• usages
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Practically speaking, the main source of runtime overheads of PAC is the extra invocations of the crypto operations for each pointer. 

Every time a pointer is stored to memory, a hash should be computed using QARMA and stored in the pointer upper bits. 

When the pointer is loaded from memory, a new hash is computed and compared against the stored one.

As EPI doesn’t require any crypto operations … 




Performance Results
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EPI reduces the average runtime overheads of 
pointer integrity from 8.5% to 0.88%!
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It reduces the average runtime overheads of pointer integrity from 8.5% (in case of ARM PAC) to 0.88%. 



EPI does not compromise on security
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No Pointer Manipulation
Protects against all known pointer manipulation attacks 
(e.g. ROP, JOP/COP, COOP, DOP).
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It’s important to note that this near native performance does not compromise on security.

EPI still protects against all known pointer manipulation attacks, including  ROP, JOP/COP, COOP, and the more recent data oriented programming attacks, DOP.




Handling Security Violations
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Advisory Exceptions
• Skip faulty instructions.
• Do NOT crash the running process. 
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If any pointer manipulation operation is detected, we skip the faulty instruction without crashing the running process. 

Instead, we raise an advisory exception to notify the operating system or the system admin of the violation. 

This way we achieve resilient operation under pointer integrity attacks. 



Handling Security Violations
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Advisory Exceptions
• Skip faulty instructions.
• Do NOT crash the running process. 

Permit List
• Initialized during program startup

Presenter
Presentation Notes
For certain cases, it might be desirable to suppress exceptions for certain functions or libraries. 

That’s why we use a hardware-based permit list that is initialized during program startup with the address range of the functions that needs to be permit-listed. 




Handling Security Violations
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Advisory Exceptions
• Skip faulty instructions.
• Do NOT crash the running process. 

Permit List
• Initialized during program startup
• Avoid false alarms for non-type aware functions (e.g., memcpy

and memmove)

Presenter
Presentation Notes
This simple technique allows EPI to avoid raising false alarms for non-type aware functions such as memcpy and memmove.

The question now is: How does EPI handle third party code?



Handling Third Party Code
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We can pick from the following options:

Presenter
Presentation Notes
Well we can pick from the following options.




Handling Third Party Code
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Compile with EPI
Compile third party code with EPI support.

We can pick from the following options:

Presenter
Presentation Notes
One can either choose to compile third party libraries with ZeRO to enjoy maximum security protection.




Handling Third Party Code
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Add to Permit List
Add to a permit list during program initialization.

Compile with EPI
Compile third party code with EPI support.

We can pick from the following options:
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Alternatively, If third-party code is not compiled with EPI, we can simply add the address range of such code to the permit list during program initialization or…






Handling Third Party Code
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Add to Permit List
Add to a permit list during program initialization.

Invoke ClearMeta
ClearMeta is inserted before passing pointers to 
external libraries.

Compile with EPI
Compile third party code with EPI support.

We can pick from the following options:

Presenter
Presentation Notes
clear the metadata bits before passing any pointers externally to avoid raising false alarms. 



Limitations
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Non-pointer Data Corruption
These attacks require a full memory safety solution.

Presenter
Presentation Notes
In terms of limitations, …
EPI does not protect against non-pointer data corruption attacks at the moment. 

Those attacks require a full memory safety solution. For 32-bit systems the jury is still out on an acceptable solution.



An efficient pointer integrity mechanism
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Specifically tailored for 32-bit embedded systems.

Offers Robust Security
 Easy to Implement
Minimal Runtime Overheads
 Low Power
 Increased Reliability

EPI

Presenter
Presentation Notes
In a nutshell, EPI provides an efficient pointer integrity mechanism, which offers robust security, is easy to implement, has minimal runtime overheads, consumes little power, and offers increased reliability.

Thus, making it an idea candidate for 32-bit embedded systems.

Thank you for listening!
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