
ZeRØ: Zero-Overhead Resilient Operation Under
Pointer Integrity Attacks

Mohamed Tarek Ibn Ziad, Miguel A. Arroyo, Evgeny Manzhosov, and Simha Sethumadhavan
Department of Computer Science

Columbia University
New York, NY, USA

{mtarek, miguel, evgeny, simha}@cs.columbia.edu

Abstract—A large class of today’s systems require high levels of
availability and security. Unfortunately, state-of-the-art security
solutions tend to induce crashes and raise exceptions when under
attack, trading off availability for security. In this work, we
propose ZeRØ, a pointer integrity mechanism that can continue
program execution even when under attack. ZeRØ proposes
unique memory instructions and a novel metadata encoding
scheme to protect code and data pointers. The combination
of instructions and metadata allows ZeRØ to avoid explicitly
tagging every word in memory, eliminating performance over-
heads. Moreover, ZeRØ is a deterministic security primitive that
requires minor microarchitectural changes. We show that ZeRØ
is better than commercially available state-of-the-art hardware
primitives, e.g., ARM’s Pointer Authentication (PAC), by a
significant margin. ZeRØ incurs zero performance overheads on
the SPEC CPU2017 benchmarks, and our VLSI measurements
show low power and area overheads.

Index Terms—Exploit Mitigation, Pointer Integrity, Memory
Safety, Code-Reuse Defenses, Caches.

I. INTRODUCTION

Pointers give programmers the raw ability to work with par-
ticular memory locations. The power and flexibility of pointers
makes programs written in C and C++ very efficient as long
as programmers are careful with their usage. Unfortunately,
errors in pointer usage (e.g., out-of-bounds access) can lead
to memory corruption vulnerabilities [47]. These memory cor-
ruption vulnerabilities have provided attackers with significant
opportunities for exploitation. For example, attackers abuse
memory safety vulnerabilities to overwrite code pointers and
hijack the control flow of the program [41], [6], [16], [5].
Similarly, attackers target data pointers to build up sequences
of operations (aka data-oriented gadgets) without modifying
the program’s control flow [20]. The prevalence of pointer
manipulation attacks against modern software has prompted
processor manufacturers to implement hardware mitigation
primitives, such as Intel’s CET [21] and ARM’s PAC [37].
For example, PAC uses cryptographic message authentication
codes (MACs) to protect the integrity of pointers, namely re-
turn addresses, code pointers, and data pointers. Unfortunately,
PAC’s usage of cryptographic primitives presents a non-zero
performance and energy penalty. In addition, PAC remains
vulnerable to speculative execution attacks where arbitrary
pointers can be speculatively authenticated [17].

In this paper, we present ZeRØ, a hardware primitive
that preserves pointer integrity at no additional performance
cost. In traditional processors, memory instructions can freely
access any memory location. There are no restrictions on the
type of operands used by a memory instruction. We observe
that this behavior is fundamental for attackers to craft their
exploits. As a result, ZeRØ introduces unique sets of memory
instructions for the different categories of pointers that make
up a program (i.e., code and data). Having specific memory
instructions for code pointers, data pointers, and regular data
allows ZeRØ to enforce access control rules that maintain
pointer integrity when under attack.

To better understand ZeRØ’s security guarantees, let us
consider the example in Figure 1. Under normal program
execution, ZeRØ enforces three different classes of data
integrity as shown in Figure 1(a), namely return address
integrity, code pointer integrity, and data pointer integrity.
Return address integrity aims at preventing the attackers from
overwriting return addresses on the stack (aka return oriented
programming, or ROP [41], [6]). Return address integrity is
provided by extending the functionality of regular CALL and
RET instructions to mark return addresses in memory and
prevent other memory instructions from accessing them. As
shown in Figure 1(b) - Ê, an attacker can attempt to overwrite
(i.e., STORE) the return address and hijack the control flow of
the program. As return addresses are marked such that they
can only be accessed by CALL/RET pairs, ZeRØ prevents an
attacker from hijacking control-flow.

ZeRØ provides code and data pointer integrity by introduc-
ing new pairs of memory instructions that are only allowed to
access code and data pointers, respectively. For example, we
use CPtrST/CPtrLD instructions for exclusively accessing
code pointers as shown in Figure 1(a) - Ë. If an attacker
attempts to overwrite a code pointer using a regular memory
instruction (e.g., STORE) as shown in Figure 1(b) - Ë, ZeRØ
prevents the memory access from occurring. ZeRØ maintains
data pointer integrity in the same way as code pointers by
introducing specific DPtrST/DPtrLD instruction variants as
shown in Figure 1(a) - Ì.

Unlike prior work, which tags every word in memory to
identify different program assets (e.g., code and data point-
ers) [46], [14], ZeRØ uses a novel metadata encoding scheme

1

Mohamed Tarek
Author’s Preprint: For Educational Use Only

Return addr.

Regular data

CALL <Foo>

...

RET

...

STORE

LOAD

Function Ptr

Regular data

Memory

Return Address Integrity Code Pointer Integrity

Memory
CPtrST

...

CPtrLD

...

STORE

LOAD

Data Ptr

Regular data

Data Pointer Integrity

Memory
DPtrST

...

DPtrLD

...

STORE

LOAD

➊ ➋ ➌

(a) ZeRØ enforces access control rules that maintain pointer integrity for return addresses, function pointers, and data pointers.

Return addr.

Regular data

CALL <Foo>

STORE

RET

...

STORE

RET

Function Ptr

Regular data

Memory Memory
CPtrST

STORE

CPtrLD

...

STORE

LOAD

Data Ptr

Regular data

Memory
DPtrST

STORE

DPtrLD

...

STORE

LOAD

(b) ZeRØ mitigates code-reuse attacks through its use of access control preventing regular STOREs from corrupting pointers.

Fig. 1: A high level overview of how ZeRØ’s pointer integrity mechanism works.

that allows it to precisely store all the required metadata to
identify different program assets with just a single bit per every
cache line in L2 and main memory (less than 0.2% memory
overheads).

ZeRØ additionally offers resilient operation under pointer
integrity attacks in the following way: if an attacker attempts to
overwrite a pointer using a regular memory instruction, ZeRØ
rejects the violating memory access and continues program
execution. If there is a need for more forensics, ZeRØ shares
the address and operands of the violating instruction with
the operating system by using an advisory exception. Unlike
traditional exceptions, our advisory exceptions do not crash
the running program unless the program is configured to do
so. This way we prevent the attacker from abusing our defense
to launch a denial-of-service attack.

We implement ZeRØ’s software changes using the LLVM
compiler infrastructure to emit our new memory instructions
depending on pointer types with no false positives. Our
experimental results on the SPEC CPU2017 benchmark suite
indicate that the software overheads of ZeRØ are 0% compared
to a baseline. Additionally, our VLSI implementation results
show that ZeRØ can be efficiently added to modern proces-
sors with negligible performance, area, and power overheads.
Unlike other pointer authentication solutions, ZeRØ does
not need to dedicate an energy budget to cryptographic co-
processors [31], [37], [30] or standalone shadow stacks [21].

II. BACKGROUND

In this section, we provide an overview of memory corrup-
tion attacks and define our threat model.

Memory safety vulnerability

Program
code

Root Cause

Target Victim

End Result

Return
address on
the stack

Function
pointer on
the heap

Data
pointers

Non-
pointer

data

Code
corruption Control-flow hijacking Data-flow

hijacking
Data

corruption

ZeRØ provides full pointer integrityW^X
Requires full

memory safetyDefense

Overheads
0% 0%

~100% with software
~15% with hardware

Fig. 2: Memory corruption targets, end results, and typical
defenses. ZeRØ prevents the most common attack vectors by
providing full pointer integrity with no performance overheads.

A. Memory Corruption Attacks

Figure 2 shows a taxonomy of memory corruption attacks
in memory unsafe languages such as C and C++. The root
cause of all memory corruption attacks is memory safety vul-
nerabilities such as buffer overflows and use-after-frees [47].
Once attackers have access to such vulnerabilities, they can
target different program assets to achieve various end goals.

Code Corruption Attacks. Traditional approaches for ex-
ploiting memory vulnerabilities aimed at either (i) overwriting
program instructions in memory with an attacker’s payload
or (ii) dumping the attacker’s code discretely to the program
stack and executing it. Nowadays, code corruption attacks are
ineffective due to the widespread deployment of WˆX [12]. In
other words, an attacker cannot overwrite program data (i.e.,
code is marked as readable and executable but not writable)

2

and cannot write and execute their own code (i.e., data is
marked as readable and writable but not executable).

Control-Flow Hijacking Attacks. This line of attacks (aka
code reuse attacks or CRAs) exploits memory vulnerabilities
to overwrite code pointers stored in memory. Corrupting a
code pointer can cause a control-flow transfer to anywhere in
executable memory. Code pointers include return addresses
on the stack and function pointers anywhere in memory.
As code pointers are stored in program memory (stack and
heap), they are a common target for attackers. For example,
return oriented programming (ROP) [41], [6] corrupts return
addresses, whereas call- and jump-oriented programming [16],
[5] corrupt function pointers (or indirect code addresses in
general). To mount a CRA, the attacker has to first analyze
the code to identify the attack gadgets, or sequences of
instructions in the victim program that end with a return
or jump instruction. Second, the attacker uses a memory
corruption vulnerability to inject a sequence of target addresses
corresponding to a sequence of gadgets. When the function
returns (or a code pointer is dereferenced), it moves to the
location of the first gadget. As that gadget terminates with
a control flow instruction (e.g., return), it transfers program
execution to the next gadget, and so on. As CRAs execute
existing instructions belonging to the program, they are not
prevented by WˆX.

Data-Flow Hijacking Attacks. In contrast to control-flow
hijacking attacks, data-oriented programming (DOP) attacks
can cause malicious end results without changing the control
flow of the program. Prior works show that manipulating data
pointers in memory is sufficient for the attacker to achieve
arbitrary computations on program input [20], [23], [36]. As
DOP attacks do not alter the program control flow, they can
easily bypass all control-flow integrity solutions. Thus, DOP is
an appealing attack technique for future run-time exploitation
defenses.

Data Corruption Attacks. This last class of attacks targets
non-pointer data items while stored in memory. Examples
include manipulating program flags to bypass selective checks
and changing configuration parameters [9]. Mitigating non-
pointer data corruption attacks requires full memory safety
solutions, which come with high performance overheads.

B. Threat Model

Adversarial Capabilities. We assume that the adversary is
aware of the applied defenses and has access to the source
code, or binary image, of the target program. Furthermore,
the target program suffers from memory safety-related vul-
nerabilities that allow the adversary to read from, and write
to, arbitrary memory addresses. The attacker’s objective is to
(ab)use memory corruption and disclosure bugs, mount a code-
reuse attack, and achieve privilege escalation. Furthermore, we
include DOP [20] attacks in our threat model. We exclude
pure data corruption attacks from our threat model as they
target non-pointer data. This limitation applies to prior work as

well [31], [7], [30], [14]. Due to their prominence, we include
speculative execution attacks in our threat model [27].
Hardening Assumptions. We assume that the underlying
operating system (OS) is trusted. If the OS is compromised
and the attacker has kernel privileges, the attacker can execute
malicious code without making CRAs; a simple mapping
of the data page as executable will suffice. However, our
technique can be applied to the operating system code itself for
protecting code and data pointers. We assume that ASLR and
WˆX protection are enabled—i.e., no code injection is allowed
(non-executable data), and all code sections are non-writable
(immutable code). Thus, attacks that modify program code at
runtime, such as rowhammer [26] and CLKSCREW [48], are
out of scope.
Secrets. Unlike prior work, ZeRØ requires no secret parame-
ters or configuration keys. The security is purely derived from
runtime enforcement.

III. THE ZERØ SYSTEM OVERVIEW

In this section, we describe how ZeRØ enforces pointer
integrity for different program assets: return addresses, code
pointers, and data pointers.
Return Address Integrity. In order to prevent return-oriented
programming attacks, ZeRØ protects return addresses on the
stack by extending the functionality of regular CALL and RET
instructions to mark return addresses in memory and prevent
program loads and stores from accessing them. When a CALL
instruction is executed, the return address is pushed to the
stack alongside the function arguments. ZeRØ sets 2 bits of
metadata in the L1 data cache to 01 to mark the 8B return
address as protected. When a RET instruction is executed,
the return address is moved from the stack to the program
counter if and only if it has the metadata bits set to 01. Once
the metadata bits are verified, program execution moves to the
new address and ZeRØ sets the metadata bits in the L1 data
cache to 00 to mark the memory location as a regular location
(i.e., non-protected). If any other LOAD or STORE instruction
tries to access a memory location while its metadata bits
are set to 01, the hardware generates an advisory exception,
effectively preventing return addresses from being leaked or
overwritten. The advisory exception is used to notify the
system administrator of the access violation without crashing
the running process.
Function Pointer Integrity. Similar to return addresses,
ZeRØ uses metadata in the L1 data cache to mark function
pointers. In order to accurately identify memory instructions
that are supposed to access function pointers, ZeRØ uses
compiler support and proposes two special instructions, Code
Pointer Load (CPtrLD) and Code Pointer Store (CPtrST), to
access function pointers. CPtrST marks the function pointer
location as protected on the first use and assigns a unique
state, 10, to it to distinguish function pointers from return
addresses. Only CPtrLD instructions are allowed to load func-
tion pointers from those protected locations. ZeRØ generates
an advisory exception if any regular memory instruction is

3

used to access a memory location that has its metadata bits
set to 10.
Data Pointer Integrity. Data pointers work analogously
to function pointers. Similarly, ZeRØ proposes two special
instructions, Data Pointer Load (DPtrLD) and Data Pointer
Store (DPtrST), to access data pointers. The functionality of
these two instructions mirrors the usage of the code pointer
variant as described above. While stored in memory, data
pointers are assigned a unique L1 metadata state, 11, to
avoid confusing them with other protected items (i.e., return
addresses and function pointers). We elaborate more on the
layout of our ZeRØ metadata and how it is propagated to
main memory in Section V.
Pointer-Flow Integrity. In addition to distinguishing between
different program assets (i.e., code pointers, data pointers,
and regular data), ZeRØ achieves finer protection granularity
by distinguishing between elements of the same program
asset. To do so, ZeRØ encodes the pointer type in the spare
bits (10 bits in our current prototype) of the pointer while
executing DPtrST. We then verify that the pointer type
matches the expected type at a DPtrLD location. The pointer
type is assigned at compile time and does not require points-
to analysis. Two pointers are compatible if their type is the
same. As the types are encoded at DPtrST/DPtrLD sites,
an attacker cannot use a vulnerable DPtrST instruction to
corrupt data pointers of incompatible types, thus reducing the
attack surface. The same approach is also applied to code
pointers to prevent the attackers from confusing incompatible
function pointers. In this case, the function type is used as a
unique type per CPtrST/CPtrLD site.

In the next three sections, we describe the required instruc-
tion set extensions, hardware changes, and compiler support
needed for ZeRØ.

IV. INSTRUCTION SET EXTENSIONS

One key aspect in ZeRØ’s design is the ability to isolate
code and data pointers in memory such that they are not
corrupted by attacker-controlled memory instructions. Thus,
ZeRØ extends the instruction set architecture to operate ex-
clusively with code and data pointers.
• CPtrST/CPtrLD <R1>, <R2>: These instructions stand
for Code Pointer Store and Code Pointer Load, respectively.
Similar to traditional stores and loads, CPtrST/CPtrLD use
two register operands. The values in registers R1 and R2
point to the store/load address and source/destination register
as usual. These instructions are emitted by the compiler
only to store/load code pointers. The compiler encodes the
code pointer type in the upper bits of R2. Upon executing
this instruction, the hardware sets/checks the corresponding
metadata bits in the L1 data cache and matches the pointer
type against the one stored in the upper bits of the memory
location (i.e., the store/load address).
• DPtrST/DPtrLD <R1>, <R2>: These instructions stand
for Data Pointer Store and Data Pointer Load, respectively.
Similar to CPtrST/CPtrLD, they are emitted by the compiler

TABLE I: Actions taken on various instructions based on
the memory location state. 00 represents regular data, 01
represents return address, 10 represents code pointer (i.e.,
specifically function pointers), and 11 represents a data pointer.
X represents “Don’t Care”.

Instruction Metadata Action
State

CALL 00 Set the metadata to 01.
01 Invalid. Cannot overwrite a return address.

RET 00 Invalid. Cannot return from a non-taken address.
01 Set the metadata to 01.
10 Invalid. Cannot return from a function pointer.
11 Invalid. Cannot return from a data pointer.

CPtrST 00 Set the metadata to 10.
01 Invalid. Cannot overwrite a return address.
11 Invalid. Cannot overwrite a data pointer.

CPtrLD 10 Load code pointer.
00 Invalid. Cannot load a non-code pointer.
X1 Invalid. Cannot load a non-code pointer.

DPtrST 00 Set the metadata to 11.
01 Invalid. Cannot overwrite a return address.
10 Invalid. Cannot overwrite a code pointer.

DPtrLD 11 Load data pointer.
10 Invalid. Cannot load a non-data pointer.
0X Invalid. Cannot load a non-data pointer.

LOAD/STORE 00 Load/Store a non-pointer data item.
01 Invalid. Cannot access a return address.
10 Invalid. Cannot access a code pointer.
11 Invalid. Cannot access a data pointer.

ClearMeta 01 Invalid. Cannot free stack memory.
11 Set the metadata to 00.
10 Set the metadata to 00.

to store/load data pointers. Upon executing this instruction, the
hardware sets/checks the corresponding metadata bits in the L1
data cache and verifies the pointer type, as described above.

• ClearMeta <R1>, <R2>: Code and data pointers cor-
responding metadata bits should be cleared when memory is
freed. To support this functionality, we add a Clear Pointer
Metadata (ClearMeta) instruction that takes two register
operands. The value in register R1 points to the starting
address of a 64B cache line. The value in register R2 is a
mask to the corresponding 64B cache line, where 1 allows
and 0 disallows changing the state of the corresponding byte.
The mask is used to perform partial updates of metadata within
a cache line. This instruction is treated similarly to a STORE
instruction in the processor pipeline since it modifies the
architectural state of data bytes in a cache line. Upon executing
a ClearMeta instruction, the metadata of the target cache
line in the L1 data cache is cleared.

Additionally, ZeRØ extends the implementation of regu-
lar CALL and RET instructions to set and check the validity
of return address metadata state in the L1 data cache. This
functionality is necessary to guarantee the integrity of return
addresses. Unlike the other cases discussed prior, this feature
does not require a special instruction or additional compiler
support. There is no need to explicitly clear the return ad-
dress metadata as they are cleared upon executing the RET
instruction. Table I summarizes the actions taken on various
instructions based on the memory location state.

4

L1 Cache Line Data

[0] [1] ... [7] [4] [5] ... [62] [63]

8B
64B

ZeRØ Metadata

[0]

2bits

0

[1] ... [15]

2B

0

0 1

1 0

1 1

Return Address

Function Pointer

Data Pointer

Regular Data

Memory Type
Each 2-bits of metadata

represents one 8B chunk.

Fig. 3: ZeRØ’s metadata encoding in the L1 data cache. ZeRØ
uses a 16-bit vector to indicate whether a chunk of eight bytes
is a return address, function pointer, data pointer, or regular
(non-pointer) data.

Data
Array

Tag
Array

ZeRØ
Metadata

A
dd

re
ss

D
ec

od
er

A
dd

re
ss

D
ec

od
er

Ta
g

In
de

x
O

ffs
et W

ay
 M

ux

=

A
lig

ne
r

D
at

a
A

dv
is

or
y

Ex
ce

pt
io

n

H
it

/ M
is

s

Address
calc.

C
he
ck

Ptr Type /
10/

2

/10

Inst. Op. /
2

Fig. 4: Pipeline diagram for the L1 cache hit operation. The
shaded blocks correspond to ZeRØ components.

V. MICROARCHITECTURE DESIGN

In this section, we describe the microarchitectural changes
that are required to enable ZeRØ.
L1 Data Cache Modifications. Figure 3 shows our L1
data cache metadata encoding. ZeRØ uses a 16-bit vector to
identify the locations of return addresses, function pointers,
and data pointers in a cache line. For example, each two bits
of the metadata bit vector represent the state corresponding to
each aligned 8B of the cache line. An 8B chunk can either
be a return address (01), function pointer (10), data pointer
(11), or regular data (00). Our bit vector introduces a 2B
storage overhead per 64B cache line (a 3.125% storage for
the L1 data cache). As shown in Figure 4, if a load/store
accesses a protected byte (which is determined by reading the
corresponding bit vector), an advisory exception is recorded
to be processed when the load/store is ready to be committed.
Exception Handling Circuitry. For certain program functions
or libraries, it might be desirable to suppress exceptions (e.g.,
when the program intentionally accesses pointers with regular
LOAD/STORE instructions). ZeRØ provides hardware support
for suppressing the advisory exceptions by using a permit-list.
When a binary is loaded the OS writes the starting address
and size of the permitted functions/libraries to the permit-

L2 Cache Line Data

[0] [1] [2] [3] [4] [5] ... [62] [63]
3B

64B

ZeRØ Metadata

1bit

1
Pointer bit

[0] [1] [2]

0 [2][1]

[2]

-

1 Pointer

2 Pointers

3+ Pointers

-

Ptr1
3bit

10

11

-

ZeRØ L1 Metadata

K1
2bit

Ptr1
3bit

Ptr2
3bit

K1
2bit

K2
2bit

16bit2bit

2bit

1b

Fig. 5: ZeRØ’s metadata encoding in L2/L3 data cache and
main memory. Ptr1/Ptr2 encodes the offset of the pointer in the
cache line, whereas K1/K2 encodes its type (return address,
code pointer, or data pointer). ZeRØ uses a single bit of
metadata to identify protected cache lines.

list in the exception handling circuitry. Then, when a ZeRØ
exception occurs, the hardware checks if the PC of the current
memory access instruction is covered by the permit-list or not.
If the PC is permitted, the advisory exception is suppressed.
Otherwise, the advisory exception is raised and the faulting PC
and memory address are passed to the OS exception handler so
that they can be used for reporting or investigation purposes.
In our design, we use an 8-entry permit-list, where the entry
size is 12 bytes (eight bytes for the function starting address
and four bytes for the size).
L2/L3 Cache Modifications. Figure 5 shows a schematic
view of our L2/L3 data cache and main memory metadata
encoding. ZeRØ uses a compressed format that requires 1
bit of metadata per 64B cache line (0.2% storage overheads)
in L2/L3 caches and main memory. The key idea is that if
a cache line has a protected memory location (i.e., return
address, code pointer, or data pointer), it will have at least
two unused bytes (i.e., the upper 16-bits of the pointer). We
use 6 bits from the pointer’s upper bits to encode its metadata.
For example, if one pointer appears in the cache line, we use
3 bits to store its offset within the line and 2 bits to define
its type (return address, code pointer or data pointer). We set
the first bit to zero to easily identify this case. The original
contents of the first 6 bits of the cache line are moved to the
upper 6 bits of the pointer. Finding the location of this pointer
requires scanning the bit vector for the occurrence of its state
(e.g., 11 for data pointers). This operation is implemented with
a priority encoder. We repeat the same approach if two assets
of any type exist in a particular cache line.

A natural question to ask is: How do we handle the case
in which multiple types of pointers exist in a cache line? For
example, a cache line might have three or more code/data
pointers. In this case, we have more unused upper pointer bits
than needed. Thus, we use 2 bits for recognizing the case and
16 bits for storing the traditional ZeRØ L1 metadata for the
entire line. To distinguish formatted lines from regular ones,

5

1: Read the bit vectors of the evicted line and OR them
2: if result is 0 then
3: Evict the line as is and set its Pointer bit to zero
4: else
5: Set the Pointer bit to one
6: Get the location of the first 3 protected addresses
7: Store the first 6, 12, or 18 bits in

the locations obtained in 6
8: Fill the first 6, 12, or 18 bits based on Figure 5
9: end

Algorithm 1: L1-to-L2 cache line transformation.

we use our single metadata bit (aka the Pointer bit) per
cache line as an indicator. If the Pointer bit is set to one,
that means we have pointers in the cache line. Otherwise, the
cache line is normal (i.e., requires no processing).1

For DRAM, we store the additional bit per cache line into
spare ECC bits, similarly to prior work [35], [40], [38]. We
note that the DDR5 standard DIMMs use 80-bit channels,
which provides ample space for additional metadata. For non-
ECC DRAMs, ZeRØ’s eight bytes per 4KB page can be stored
in a disjoint location in memory at no additional cost.
L1 to/from L2 Transformation Module. ZeRØ uses two
different formats: one for the L1 data cache and another for
the L2/L3 data caches. As a result, a transformation module is
needed to switch between the two formats while cache lines
are moving between L1 and L2 in both directions. While the
L1-to-L2 transformation module is not on the critical path
(only invoked when cache lines are evicted from L1 to L2),
the L2-to-L1 transformation module is on the critical path of
the processor load operation. Thus, the transformation needs
to be carefully designed in order to avoid adding latency to
the L2 data cache access.

Algorithm 1 shows the high-level process of the L1-to-L2
transformation module. Figure 6 shows the block diagram
of the same module. The process starts by ORing all bits
from the input L1 bit vector to detect whether a protected
address (return address, code pointer, or data pointer) exists
in the cache line or not. If the result equals zero (i.e., no
protected addresses are detected), we simply set the Pointer
bit (L2 ZeRØ metadata in Figure 6) to zero. If any protected
address is detected, we fill in the cache line header according
to Figure 5. Priority encoders are used to find the index of
the first three protected addresses, if they exist. We use the
aforementioned locations to store the original contents of the
first 6, 12, or 18 bits of the cache line (Line 7 in Algorithm 1)
using a cross bar and combinational logic.

Algorithm 2 and Figure 7 show the high-level process and
block diagram of our L2-to-L1 transformation module. If the
cache line has its Pointer bit set to one, we check the least
significant 2 bits of the first byte to identify the encoding
case and reconstruct the original contents of the first 6, 12,
or 12 bits of the cache line accordingly. We evaluate the

1We note that ZeRØ’s metadata bits can be completely hidden on systems
that use caches with error-correction-codes (ECC) support. The techniques
from Gumpertz [18] can be used to store ZeRØ’s metadata bits for free without
compromising the typical ECC functionality. We leave this extension to future
work.

latency and area overheads of our transformation modules
in Section VIII-A.
Load/Store Queue Modifications. Since the CALL/RET in-
structions generate a store/load micro-op as part of their
regular functionality on CISC systems, there is a chance of
a load to store forwarding between the stored return address
from the CALL instruction to a subsequent in-flight load
instruction, violating our return address integrity. To avoid
this scenario, ZeRØ extends load/store queue entries with
12 bits that specify whether the entry is associated with a
return address, function pointer, data pointer, or regular data
(2 bits) in addition to its pointer type (10 bits). This way
entries marked as return addresses (or code/data pointers) are
written as part of a CALL (or CPtrST/DPtrST) instruction
and can only be forwarded to loads that are part of a RET
(or CPtrLD/DPtrLD) instruction, respectively. To provide
tamper-resistance against side-channel attacks, ZeRØ forwards
the value zero from those entries to any matching in-flight
load instructions and marks them as potential violators. An
advisory exception is thrown only when the potential violating
instructions are committed to avoid any false positives due
to misspeculation. The checking operation is performed in
parallel to the regular address matching process with no
performance impact.

VI. SOFTWARE DESIGN

In this section we describe the memory management, com-
piler, and operating system support necessary to enable ZeRØ.

A. Memory Management

ZeRØ is agnostic to the memory allocator. ZeRØ inter-
cepts any program calls to free()/delete[] and emits
ClearMeta instructions to clear code- and data-pointers
metadata from the free’d regions if it exists. Additionally,
ZeRØ emits ClearMeta instructions on function returns to
cleanup the stack frame.

B. Compiler Support

Pointer Integrity. To provide pointer integrity, we need to
accurately identify LOAD and STORE instructions that access
pointer values. To do so, our current prototype uses the
Clang/LLVM compiler infrastructure to replace program code-
and data-pointer loads and stores with our new instructions,
CPtrLD/CPtrST and DPtrLD/DPtrST.

In order to protect code pointers that are initialized prior
to runtime (e.g., entries in C++ virtual tables), we add a
handleGlobals function that emits CPtrST instructions
for all global pointers and invoke it at the start of the main
function as part of program initialization. This way we protect
all code pointers that have no explicit STORE instructions
executed at runtime.
Pointer-Flow Integrity. To prevent pointer confusion between
data pointers, we encode the type of the pointer in its most
significant 10 bits prior to executing DPtrLD/DPtrST. We
use the pointer’s LLVM ElementType, which depends on
the type of the pointed-to data structure. The ElementType

6

L1 Cache Line Data (Input)

[0] [1] [2] [3] ... [62] [63]

64B

L2 Cache Line Data (Output)

[0] [1] [2] [3] ... [62] [63]

3B
64B

L2 ZeRØ
 metadata
(Output)

1bit

Find the
location
of first 3
pointers

Cross Bar & Combinational Logic

Location of first
3 protected pointer

/
9

/
512

488 (i.e., 61 Bytes)/
L1 data [2:0]

L1 ZeRØ metadata /
16

/
16

/ 24

16
/

[0] [1] ... [15]

...

2B
has pointers?

L1 ZeRØ metadata (Input)
Combinational

Logic

Fig. 6: Block diagram of the L1-to-L2 transformation module that is used during the spill operation. The left hand side shows
the input L1 cache line data and the corresponding L1 ZeRØ bit vector.

L1 Cache Line Data (Output)

[0] [1] [2] [3] ... [62] [63]

64B

L1 ZeRØ metadata (Output)

L2 Cache Line Data (Input)

[0] [1] [2] [3] ... [62] [63]

3B
64B

L2 ZeRØ
 metadata

(Input)

1bit

Zeros
/
16

0

1

S0

/16

[0] [1] ... [15]/16

L2 data [2:0]

Find the
location
of first 3
pointers

2B

488 (i.e., 61 Bytes)
/

L2 ZeRØ
Pointer bit

/
16

9/
0

1

S0

Combinational
Logic

2-LSBs
==
11?

/
16

/
24

/
24

Fig. 7: Block diagram of the L2-to-L1 transformation module that is used during the fill operation. The left hand side shows
the input L2 cache line data and the corresponding single Pointer bit of ZeRØ.

1: Read the Pointer bit for the inserted line
2: if result is 0 then
3: Set the entire bit vector to [0]
4: else
5: Check the least significant 2 bits of byte 0
6: if result is 11 then
7: Copy bit[2-18] to the L1 bit vector
8: Get the location of the first 3 protected addresses
9: Set the data of bit[2-18] to the upper

6 bits of location obtained in 8
10: else
11: Set the metadata of addresses[Ptr[1-2]] to K[1-2]
12: Set the data of the first 12 bits to the most

significant 6 bits of byte[Ptr[1-2]]]
13: end
14: end

Algorithm 2: L2-to-L1 cache line transformation.

of each pointer is readily available and does not require
points-to analysis. Similarly, we encode code pointer types
in the most significant 10 bits of a code pointer prior to
executing CPtrLD/CPtrST to prevent the attackers from
confusing incompatible function pointers. In this case, we use
the function type as a unique code pointer type.

Return Address Integrity. No compiler support is needed for
return address integrity as ZeRØ extends the functionality of
traditional CALL/RET instructions.

Finally, a recent work [43] shows that it is feasible to
track data pointers in hardware with no compiler support.
This pointer tracking feature should enable ZeRØ to relax its
compiler support requirement for data pointer integrity.

7

C. Operating System Support

Advisory Exceptions. When ZeRØ’s hardware detects an
access violation, it throws an exception once the instruction
becomes non-speculative. Our exceptions are advisory in na-
ture. In other words, they do not halt program execution.
Instead, they just notify the operating system of the invalid
behavior and continue program execution (after rejecting the
violating memory access).2 ZeRØ provides hardware support
for suppressing the advisory exceptions by using a permit-list,
as described in Section V. For example, it might be desirable
to add functions that copy plain bytes (e.g., memcpy and
memmove) to the permit-list as they may generate exceptions
upon accessing protected addresses (e.g., pointers). Wher-
ever possible, our compiler pass emits type-aware copying
functions that do not need any special exception handling.
Of the 16 SPEC CPU2017 C/C++ benchmarks, only two
(502.gcc_r and 526.blender_r) have cases where a
permit-list is needed. For the rest of the benchmarks, our
compiler pass successfully identifies the copied operands types
and emits our special instructions for copying the protected
fields and regular memory access instructions for the non-
pointer fields.
Page Swaps. ZeRØ requires 1 bit of metadata per 64B cache
lines. When a page is swapped out from main memory, the
page fault handler needs to store the metadata for the entire
page into a reserved address space managed by the OS; the
metadata is reclaimed upon swap in. The kernel has enough
address space in practice (the kernel’s virtual address space is
128TB for 64-bit Linux with 48-bit virtual address space) to
store the metadata for all the processes on the system since the
size of the metadata is minimal (8B for a 4KB page or 0.2%).
Stack Unwinding. The C standard includes the setjmp and
longjmp programming interface, which can be used to add
exception-like functionality to C. setjmp saves the current
environment including the return address and stack pointer to
a memory buffer (jmp_buf) while longjmp restores the
previously saved environment from jmp_buf. To guarantee
return address (and stack pointer) integrity while saved in
jmp_buf, ZeRØ instruments setjmp/longjmp to insert
CPtrST/CPtrLD instructions for those protected addresses.
This way an attacker cannot use regular memory instructions to
overwrite the return address and stack pointers in jmp_buf.
The same approach can be applied to the C++ exception
handling mechanism by instrumenting the appropriate APIs.
Context Switching. The permit-list contents (96 bytes) are
maintained across context switches—as part of the process
control block—if the process uses a permit-list. This step is
likely to add minimal overhead (a few LOAD and STORE
instructions takes ≤ 0.1µS) to the OS context switch (typ-
ically 3− 5µS). Other OS-related tasks remain intact, such
as inter-process data sharing, copy-on-write, and memory-
mapped files.

2Only faulty store instructions are rejected to guarantee pointer integrity.
We do not skip faulty loads as they do not change the control/data flow of
the program.

Finally, as ZeRØ’s metadata is inlined within the pointers
themselves, they require no extra work for supporting multi-
threaded applications.

VII. SECURITY ANALYSIS

In this section, we analyze the security guarantees provided
by ZeRØ and its current limitations.

A. Security Discussion

Return Oriented Programming Attacks. Corrupting code
pointers has been the most common and preferred attack vector
over the last two decades. For instance, ROP attacks [41] and
their just-in-time variant [45] typically start by corrupting the
return address of a function to hijack the control flow of a
program. ZeRØ’s return address integrity effectively mitigates
those attacks as it stops the adversary from leaking/overwriting
return addresses using 1 bit of metadata per cache line in
L2/L3 and main memory. For example, when an attacker
tries to overflow a buffer to write to an adjacent return ad-
dress, ZeRØ rejects the action and raises an advisory exception
as the access violates the rules in Table I.
Jump- and Call-Oriented Programming Attacks. Protecting
return addresses alone is not sufficient for more advanced
attack variants. A variation of the ROP attack uses indirect
branch instructions (JMP) to transfer control between gadgets.
This attack technique is called jump-oriented programming
(JOP) [5]. Another similar attack variant is call-oriented pro-
gramming (COP) [16], which uses gadgets ending with an
indirect CALL instruction. What makes JOP and COP similar
is their use of code pointers for the indirect JMP/CALL instruc-
tions. As ZeRØ’s code pointer integrity protects code pointers
from being manipulated in memory, an attacker cannot use the
pointers to launch a JOP/COP attack.
Counterfeit Object-Oriented Programming Attacks. Un-
like ROP/JOP/COP attacks, which (re)use short instruction se-
quences, in counterfeit object-oriented programming (COOP)
attacks, whole C++ functions are invoked through code point-
ers in read-only memory, such as vtables [39]. Each
C++ object keeps a pointer (vptr) to its vtable (a table
containing pointers to virtual methods). A method invocation,
therefore, requires (a) dereferencing the vtable pointer,
(b) computing the respective table index, and (c) executing
an indirect CALL instruction with the table entry of the
previous step as an operand. COOP attacks typically hijack
program control-flow by overwriting vptrs of existent C++
objects and/or crafting counterfeit C++ objects with arbitrary
vptrs. ZeRØ prevents COOP attacks by protecting code
pointers inside the vtables and by using data pointer
integrity to harden the vptr inside the C++ objects. For
instance, using a regular STORE instruction to create a vptr
will cause an advisory exception when the counterfeit vptr
is accessed with a DPtrLD instruction.
Data-Oriented Programming Attacks. Unlike control-flow
hijacking attacks, data-oriented programming (DOP) attacks
do not alter the control flow of the program [20], [23], [36].

8

Instead, DOP attacks abuse data pointers to simulate the
attacker’s arbitrary computations using the original control
flow of the victim program. Mitigating DOP has been a real
challenge for prior defenses due the attack’s use of data
pointers. As data pointers are much more common than code
pointers, the overheads of protecting them can be significant.
ZeRØ’s inlined metadata allows us to provide data pointer
integrity with no performance cost. ZeRØ prevents those
attacks by ensuring that regular LOAD/STOREs cannot corrupt
data pointers.

Pointer Confusion Attacks. An attacker who has access to
a DPtrST instruction may potentially overwrite any data
pointer as all data pointers use the same encoding state
(i.e., 11). To mitigate this issue, ZeRØ assigns a unique 10-
bit identifier for every data pointer type and verifies it at
DPtrST/DPtrLD call sites. This identifier prevents an at-
tacker from using a vulnerable DPtrST instruction to corrupt
arbitrary data pointers in memory. Instead, attackers will be re-
stricted to accessing data pointers of the same (or compatible)
type, thus reducing the attack surface. To comply with the C
standard [22], ZeRØ permits accessing any data pointer using
void* and char* without flagging a violation. All other data
pointer types are considered incompatible. Similarly, ZeRØ
mitigates code pointer confusion attacks by using the function
type as a unique identifier at CPtrST/CPtrLD call sites. We
report the total number of unique data- and code- pointer types
for SPEC CPU2017 benchmarks in Section VIII.

Speculative Execution Attacks. Speculative execution at-
tacks represent a major challenge for all modern security
solutions [27]. They allow the attacker to leak program
memory by first speculatively executing instructions that are
not supposed to execute under normal conditions. The traces
left behind in the microarchitecture by the speculatively exe-
cuted instructions are then used to leak information covertly.
While ZeRØ does not prevent speculative execution attacks,
ZeRØ takes multiple steps to ensure speculative execution
attacks cannot be used to bypass it. For example, a recent work
(SpecROP [2]) shows that an attacker can speculatively chain
multiple ROP gadgets. SpecROP uses speculative execution to
prime the targets of indirect jump instructions and uses them
to construct a gadget chain that leaks secrets. As all gadgets
are speculatively executed, current defenses do not raise ex-
ceptions upon executing them. On the other hand, ZeRØ is
resilient against SpecROP as we do not forward regular data
(i.e., has a 00 state) to protected addresses (e.g., code pointers
with a 10 state) in the processor pipeline. Instead, we mark
those cases as potential violations and only raise our advisory
exception when they become non-speculative. Thus, SpecROP
gadgets will not be able to receive the attacker’s primed targets.

In addition, it has been shown that speculative execution
attacks can bypass ARM PAC by speculatively executing
pointer signing instructions as gadgets to sign arbitrary point-
ers [17]. Once the pointers are signed, an attacker can leak
the signature via a covert channel and use it to create a forged
pointer. This forged pointer is then used to bypass ARM PAC

authentication. This raises the question of whether an attacker
can use a speculative execution attack to bypass ZeRØ. The
short answer is No. Speculatively executing CPtrLD/DPtrLD
instructions can only leak the pointer value. Leaking code
and data pointers cannot alter the control/data flow of the
program. On the other hand, overwriting the pointer requires
a STORE instruction, which cannot be speculatively executed.
Finally, ClearMeta instructions cannot be speculatively used
to clear the pointer metadata bits as they are treated similarly
to STORE instructions.

B. Limitations

Non-pointer Data Corruption. The main focus of this work
is preventing the corruption of different pointer classes. It
is to say, ZeRØ does not prevent regular (non-pointer) data
from being corrupted through program LOAD/STOREs. Non-
pointer (aka non-control) data attacks that tamper with or
leak security-sensitive memory are possible [9]. Defeating
non-pointer data attacks requires full memory safety, which
typically comes with significant memory and performance
overheads. Similar to recent hardware-based solutions (e.g.,
IntelCET [21], ARM PAC [37], and Morpheus [14]), we
opt to exclude pure data attacks to simplify our design and
performance requirements.
Third-party Code. Similar to prior work [30], ZeRØ pro-
vides pointer integrity for instrumented code only. Third-party
libraries cannot take advantage of ZeRØ without recompila-
tion. To facilitate communication with unprotected third-party
code, ZeRØ provides a couple of options. The first option is
to add the starting address and size of the third-party code to
the permit-list. This way LOAD/STORE instructions from the
third-party code operate normally without generating advisory
exceptions. The second option is to clear the code- and data-
pointer metadata in memory regions that are shared with third-
party code before invoking external libraries. This is done
by recognizing external library calls at the compiler level
and inserting ClearMeta instructions accordingly. This way
regular LOAD/STORE instructions in uninstrumented libraries
can access the passed pointers without raising exceptions.
ZeRØ, however, never clears the return address metadata bits
if they are set, as return address integrity requires no program
recompilation and thus can be provided for third party libraries
and legacy binaries.
Memory Aliasing. Two memory access instructions can ac-
cess the same memory location using different types. For
example, a C union with a pointer and an integer member
can be accessed using both regular STORE and DPtrST
instructions. To avoid raising false alarms, ZeRØ statically
detects such occurrences at compile time and emits regular
STORE instructions for all union accesses. Similarly, we emit
regular STOREs for pointers that are “cast” to integers before
being stored to memory. While emitting regular STOREs for
potential pointers reduces the security coverage, we opt for
this solution to eliminate any false positives even if such C
idioms are uncommon.

9

TABLE II: Area, delay and power overheads of ZeRØ (GE
represents gate equivalent).

ZeRØ Area (GE) Delay (ns) Power (mW)

L1 Overheads [+5.41%] 531,175 [+0.05%] 1.99 [+3.37%] 30.7

L2-to-L1 Transformation 299 1.45 0.04
L1-to-L2 Transformation 326 1.72 0.04

VIII. EVALUATION

In this section, we first measure the hardware overheads of
implementing ZeRØ. Then, we compare ZeRØ’s performance
against prior solutions using the SPEC CPU2017 benchmark
suite.

A. Hardware Measurements

ZeRØ adds additional operations to the L1 data cache and
the interface between the L1 and L2 caches. Qualitatively,
the area overhead of ZeRØ’s L1 metadata is 3.125% as
it adds 2B per 64B. As the metadata lookup happens in
parallel to the L1 data and tag accesses, ZeRØ should have no
impact on the L1 access latency. We verify this hypothesis by
implementing ZeRØ on top of a 32KB direct mapped L1 data
cache. We synthesize the baseline L1 data cache and the ZeRØ
modified cache with the Synopsys Design Compiler and the
45nm NangateOpenCell library. We use OpenRAM [19] to
generate SRAMs for both the data/tag arrays in L1 data cache
and the bit vector arrays for ZeRØ. We report our VLSI
measurements results in Table II.

As expected, the overheads associated with the ZeRØ
pointer integrity are minor in terms of delay (0.05%) and
power consumption (3.37%). The latency of the L2-to-L1
transformation module is less than the L1 data cache latency.
This small latency implies that our transformation module can
be folded completely within the pipeline stages and will not
impact the performance-critical cache line fill operation. On
the other hand, the latency of the L1-to-L2 transformation
module is slightly higher (1.72ns). This is acceptable as the
spill operation is not on the processor critical path. Thus,
adding one more cycle to cache line evictions will not impact
program execution time. Finally, the area and power overheads
of our transformation modules are negligible compared to the
L1 data cache.

B. Software Performance

We use the VLSI measurements as a guideline for our soft-
ware evaluation. Our VLSI measurements show that ZeRØ’s
hardware changes have no impact on L1/L2 access latency.
Thus, no extra clock cycles are needed to perform our integrity
operations. In terms of program instructions, ZeRØ’s return
address integrity does not add any special instructions. Instead,
it extends the functionality of regular CALL/RET instructions.
On the other hand, ZeRØ uses special instructions to access
code and data pointers. We note that the CPtrLD/CPtrST
and DPtrST/DPtrST instructions simply replace traditional
loads and stores for code and data pointers, respectively. They
do not require any extra registers. We insert MOV instructions

TABLE III: Number of unique LLVM function pointer types
(FPtrType) and data pointer types (DPtrType) for the SPEC
CPU2017 benchmark suite.

Benchmark Number of Number of Benchmark Number of Number of
Name CPtrTypes DPtrTypes Name CPtrTypes DPtrTypes

perlbench 17 72 xalancbmk 837 703
gcc 78 451 x264 50 23
mcf 0 6 blender 566 705
namd 5 10 deepsjeng 0 2
parest 48 611 imagick 21 54
povray 31 148 leela 1 16
lbm 0 2 nab 0 19
omnetpp 298 133 xz 14 18

to encode the pointer types into the upper 10 bits of the
CPtrLD/DPtrLD destination register and CPtrST/DPtrST
source register (all are 48-bit wide pointers). We report the
total number of unique data/code pointer types in Table III.
Finally, ZeRØ inserts ClearMeta instructions upon heap/s-
tack memory deallocation to remove the tags from the code-
and data pointers, if they exist. We emulate the overheads
of the ClearMeta instructions by inserting dummy STORE
instructions in the corresponding (deallocation) code segments.

C. Comparison with Prior Work.

To demonstrate the need for implementing ZeRØ, we
compare it against the state-of-the-art pointer integrity tech-
nique, ARM PAC using the SPEC CPU2017 workloads. Prior
work [30] showed that ARM PAC can be used to enforce code-
and data-pointer integrity. As ARM PAC is only available in
certain Apple SoCs with no support for third party code at
the time of writing, we use the same emulation methodology
as used by Liljestrand et al. [30] to estimate the performance
overheads. We write a LLVM/Clang compiler [29] pass to
insert four exclusive-or (xor) operations to account for the 4
cycle latency introduced by the PAC instructions. In addition
to ZeRØ, we run three different instrumentation configura-
tions:

• PAC-FPtr. In this configuration, ARM pointer authenti-
cation is applied to function pointer usages (i.e., forward-
edge protection). Our compiler pass inserts the dummy
instructions whenever a function pointer is loaded from
memory (to emulate code pointer authentication) or
stored to memory (to emulate code pointer signing).

• PAC-RET. In this configuration, ARM pointer authen-
tication is applied to return addresses (i.e., backward-
edge protection). Our compiler pass inserts the dummy
instructions when a CALL instruction is executed (to sign
the return address before pushing it to the stack memory)
and when a RET instruction is executed (to authenticate
the return address after loading it from memory).

• PAC-Full. In this configuration, ARM pointer authentica-
tion is applied to return addresses, code pointers, and data
pointers. In addition to the first two configurations, we
instrument all data pointer LOAD and STORE instructions
to insert the dummy PAC instructions.

10

1.03 1.06 1.14 1

0.0

0.5

1.0

1.5

2.0
N

or
m

. P
er

f.

PAC-FPtr PAC-RET PAC-Full ZeRØ

Fig. 8: Performance overheads of ZeRØ and three different ARM PAC configurations for the SPEC CPU2017 benchmark suite.

Evaluation Setup. We run our experiments on a bare-metal
Intel Skylake-based Xeon Gold 6126 processor running at
2.6GHz with RHEL Linux 7.5 (kernel 3.10). We use the SPEC
CPU2017 benchmarks with ref inputs and run to completion.
To minimize variability, each benchmark is executed 5 times
and the average of the execution times is reported. We notice
negligible variance between the different runs.
Performance Results. Figure 8 shows the runtime overhead
of the different design approaches (all normalized to baseline
execution with no defenses). As the name suggests, ZeRØ
introduces 0% performance overheads on average with a
maximum of 0.6%. The overhead of PAC-FPtr is 3% on
average with a maximum of 53%. The overhead of PAC-RET
is 6% on average with a maximum of 59%.

Protecting all code and data pointers with PAC-Full results
in 14% performance overheads on average with a maximum
of 75%, which in many situations is considered too costly
for ARM PAC to be practically deployed for data pointer
protection. AOS [25] reduces the performance cost of data
pointer integrity by using bounds tables and on-chip caches
instead of signing/authenticating every data pointer. AOS
reports an average performance overhead of 8.4% on SPEC
CPU2006 workloads (by running the first 3 billion instructions
on the gem5 simulator [4]). ZeRØ reduces the pointer integrity
costs to zero by using minimal L1 metadata and only a 0.2%
memory overhead.

IX. RELATED WORK

In Section VIII, we showed that ZeRØ has clear perfor-
mance advantages compared to the state-of-the-art commer-
cial solution (ARM PAC). In this section, we explore other
memory corruption mitigations and discuss their benefits and
differences. Table IV divides prior work into three groups:
shadow stack-based systems, encryption-based solutions, and
full memory safety techniques.
Shadow Stack-Based Techniques. A straightforward solution
to gurantee the integrity of return addresses is to adopt a
shadow call stack [8]. Every time a CALL instruction is
executed, the return address is pushed to the regular stack
and an additional memory instruction stores a copy of the
return address to the shadow stack. When a function returns,

the original return address is restored from the stack and
compared against the shadow return address. If an attacker
manipulates the return address while stored on the stack,
a mismatch occurs as the shadow stack is not accessible
by the attacker. For example, Intel Control-flow Enforce-
ment Technology (CET) [21], [42] makes its shadow stack
inaccessible to program loads and stores, while CFI CaRE
protects the shadow stack using ARM TrustZone-M security
extensions [33]. Similar to ZeRØ’s return address integrity,
shadow stacks can be applied to legacy binaries with no
compiler modifications. However, shadow stacks add an extra
memory access operation for every function call and return,
increasing energy and memory overheads.

Unlike return addresses, code pointers are not accessed in
pairs of CALL/RET instructions. As a result, shadow stack-
based defenses require an additional component to protect
code pointers (aka forward-edge transitions). For example,
Intel CET adds a new ENDBRANCH instruction, which is
placed at the entry of each basic block that can be invoked via
an indirect branch. When an indirect forward branch occurs,
the following instruction is expected to be an ENDBRANCH,
otherwise an attack is assumed. On the other hand, CFI CaRE
instruments binaries in a manner which removes all function
calls and indirect branches and replaces them with dispatch
instructions that trap control flow to a branch monitor. The
branch monitor verifies the control-flow transition by com-
paring it against a pre-determined (i.e., compile time) control
flow graph (CFG) of the program. Trapping into the branch
monitor for every indirect call causes CFI CaRE’s performance
overheads to range between 13% and 513%. More importantly,
techniques that rely on static analysis to construct a CFG and
enforce it at runtime are ultimately limited by the precision
of the analysis [7]. ZeRØ’s simple instruction set extensions
implicitly protect forward edge transitions by guaranteeing
code pointer integrity with zero cost.

Code Pointer Integrity (CPI) [28] and its relaxed variant
(Code Pointer Separation) use compiler analysis and instru-
mentation to isolate code pointers into a separate region of
memory. The idea is similar to the concept of shadow stacks,
but extends it to include code pointers in globals and heap
objects. Unlike ZeRØ’s inlined metadata, CPI requires extra
memory accesses per every sensitive pointer access to fetch

11

TABLE IV: Comparison Against Prior Works. The assets protected by each system is listed: RET stands for return address
integrity/protection, CPtr stands for function pointer integrity, DPtr stands for data pointer integrity, and Data stands for
non-pointer data integrity.

Proposal Protected Assets Main Hardware Metadata
RET CPtr DPtr Data Operations Changes Overhead

Intel CET [21] 3 7 7 7
Memory access per CALL/RET Isolated shadow stack and 1 word per
and EndBranch Check indirect branch FSM tracker return address

CFI CaRE [33] 3 3 7 7
Memory access per CALL/RET

TrustZone-protected shadow stack
1 word per

and Branch verification return address

CPI [28] 3 3 7 7
Extra memory accesses per every

No changes
4 words per

sensitive pointer access sensitive pointer

Branch Regulation [24] 3 3 7 7
Memory access per CALL/RET Isolated Secure Call Stack 3 words per
and Branch verification and a function bounds cache stack frame

CCFI [31] 3 3 7 7 Pointer signing/authentication AES co-processor ptr-inlined
ARM PAC [37], [30] 3 3 3 7 Pointer signing/authentication QARMA co-processor ptr-inlined

HDFI [46] 3 3 7 7 Tag check
1B per L1D line, Tag$, 1 bit per word
and DFITagger unit

Morpheus [14] 3 3 3 7
Pointer encryption/decryption QARMA co-processor, Tag$, 2 bits per word
and pointer displacement and churn unit

Intel MPX [34] 3 3 3 3 2+ mem ref for bounds Unknown (closed platform) 2 words per ptr

CHERI [52] 3 3 3 3
1+ mem ref for capability and Capability coprocessor, Tag$

Ptr size is 4x
capability management instructions and Capability Unit

CHEx86 [43] 3 3 3 3
1+ mem ref for capability and µop injection logic, Capability$

2 words per ptr
pointer tracking alias$, and speculative pointer tracker

MemTracker [51] 3 3 3 3
1+ mem ref for state checks Programmable table, 32 instructions,

n bits per word
and states updates state$, and 2 extra pipeline stages

Califorms [38] 3 3 3 3 Tag check 8B per L1D line, 1 bit per L2 line 1-7B per ptr

ZeRØ 3 3 3 7 Tag check 2B per L1D line, 1 bit per L2 line ptr-inlined

its corresponding metadata. Moreover, prior work showed that
CPI’s safe region can be leaked and then maliciously modified
by using data pointer overwrites, undermining the security
guarantees of the solution [13].
Encryption-Based Techniques. To eliminate the memory
costs associated with shadow stacks, prior work used encryp-
tion to randomize the pointer layout before storing it to mem-
ory. As long as the attackers have no access to the encryption
key, they cannot reliably leak/overwrite the pointer. Early work
used XOR-based encryption to avoid adding performance costs
to every pointer load/store operation [10], [50]. As XOR-
based encryption is vulnerable to known plaintext attacks,
modern work utilizes strong encryption, such as AES in
cryptographic control-flow integrity (CCFI) [31] and QARMA
ciphers in ARM PAC [37], [30] and Morpheus [14]. Our
software evaluation shows that ZeRØ completely eliminates
the runtime overheads associated with ARM PAC for code
and data pointer protections.

Another example of an encryption-based defense is Mor-
pheus [14], an architecture that (i) displaces code and data
pointers in the address space (ii) diversifies the represen-
tation of code and pointers using strong encryption, and
(iii) periodically repeats the above steps using a different
displacement and key. Similar to ZeRØ, Morpheus does not
protect non-pointer data corruption and provides low perfor-
mance overheads. Unlike ZeRØ which is a secret-less solution,
Morpheus must keep two parameters secret until they are
changed: displacements for the code and data regions, and

keys for encrypting/decrypting pointers. Additionally, a key
limitation of encryption-based techniques is the additional
energy costs per pointer operation. One AES operation can
cost up to 48.02pJ/bit (or 3073.28pJ per 64-bit encryption)
at 1 MHz while one QARMA operation costs 7.78pJ/bit
(or 497.92pJ per 64-bit encryption) [15], which is at least an
order of magnitude higher than ZeRØ’s 2-bit metadata read
and check in the L1 data cache (energy consumption of L1 data
access ranges between 64 and 105pJ/Byte, i.e., 16 and 26.25pJ
per two bits [32]).
Memory Safety Techniques. Since memory safety vulnera-
bilities are the root cause of the majority of memory attacks,
researchers and manufacturers have proposed many hardware
solutions to address this problem, including base and bounds
techniques [11], [34], [53], [43], [49], memory tagging [35],
[1] and tripwires [44], [38]. While the aforementioned tech-
niques protect both pointer and non-pointer data items, the
biggest hurdle for adopting them is their performance over-
heads. For example, Intel MPX can introduce up to 4x
performance overheads [34], whereas a recent capability-based
system, CHEx86, introduces 14% runtime overheads and 38%
memory overheads [43]. ZeRØ instead provides code and data
pointer integrity, which is sufficient to prevent a wide range
of code reuse and data-oriented programming attacks, at no
runtime cost.

While state-of-the-art tripwires systems (i.e., REST [44]
and Califorms [38]) come with low performance overheads,
both are vulnerable to non adjacent buffer overflow attacks.

12

For example, an attacker can leverage a non adjacent buffer
overflow to jump over the redzones of REST/Califorms and
corrupt the victim pointer. ZeRØ is resilient against non
adjacent buffer overflows, which represent 27% of Microsoft’s
memory safety CVEs [3]. Finally, while changing the cache
line format between L1 and L2 was first introduced in Cal-
iforms [38], ZeRØ uses a simpler encoding that reduces the
complexity of the L1/L2 transformation modules and avoids
adding any latency to the performance-critical fill operation.
Moreover, Califorms’ metadata is used to deny accesses to
dead bytes whereas ZeRØ’s metadata is used to enforce access
control rules on neighboring data (i.e., the rest of bytes in the
code/data pointer).

X. CONCLUSION

Most end users want security but do not want the inconve-
nience of having it: they do not want their batteries drained, or
apps slowed, or to be bothered with updates and crashes. This
is the unfortunate reality that sends novel security techniques
with even minor performance overheads to the crypt of great
security ideas. Techniques that have been mass deployed in
hardware (e.g., WˆX and SMEP/SMAP) are the ones that have
close to zero overheads. Even techniques like ARM’s Pointer
Authentication (PAC) —which does have significant overhead
when applied fully—is applied partially to only protect code
pointers, and only to the kernel to keep the overheads small.
Thus, low performance overhead and convenience are key to
widespread adoption of security techniques.

In this paper we proposed ZeRØ, a hardware primitive for
resilient operation under memory corruption attacks with zero
overhead. ZeRØ enforces code and data pointer integrity with
minimal metadata. Specifically, using 1 bit per 64 bytes in L2
and beyond, and 3.125% area overhead in the L1, ZeRØ is
able to protect the integrity of both code and data pointers. As
a result, ZeRØ incurs 0% performance degradation compared
to 14% for the state-of-the-art ARM PAC when applied to its
full extent. ZeRØ matches or offers better security guarantees
than ARM’s PAC and Intel’s CET. Moreover, our VLSI results
showed that ZeRØ can be implemented with minimal latency,
area, and power overheads.

The techniques described in the paper offer exploit mitiga-
tion at no cost and are a perfect complement to systems that
identify and mitigate a broader class of memory attacks, such
as No-FAT [49]. Extant memory safety techniques are more
suitable for testing before apps are distributed to customers
where higher overheads can be tolerated, while exploit miti-
gation techniques such as ZeRØ which offer no overheads and
resilient operation are more suitable for end user deployment.
This will at least be the case until memory safety techniques
can be offered with 0% runtime overhead.

ACKNOWLEDGMENT

This work was partially supported by FA8750-20-C-0210, a
Qualcomm Innovation Fellowship, and a gift from Bloomberg.
Any opinions, findings, conclusions and recommendations
expressed in this material are those of the authors and do

not necessarily reflect the views of the US government or
commercial entities. Simha Sethumadhavan has a significant
financial interest in Chip Scan Inc.

REFERENCES

[1] ARM, “Memory tagging extension: Enhancing memory safety through
architecture,” https://community.arm.com/developer/ip-products/
processors/b/processors-ip-blog/posts/enhancing-memory-safety, 2019.

[2] A. Bhattacharyya, A. Sánchez, E. M. Koruyeh, N. Abu-Ghazaleh,
C. Song, and M. Payer, “SpecROP: Speculative exploitation of ROP
chains,” in RAID ’20: Proceedings of the 23rd International Symposium
on Research in Attacks, Intrusions and Defenses, San Sebastian, Spain,
October 2020, pp. 1–16.

[3] J. Bialek, K. Johnson, M. Miller, and T. Chen, “Security
analysis of memory tagging,” 2020. [Online]. Available:
https://github.com/microsoft/MSRC-Security-Research/blob/master/
papers/2020/Security%20analysis%20of%20memory%20tagging.pdf

[4] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5
simulator,” SIGARCH Computer Architecture News, 2011.

[5] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: A new class of code-reuse attack,” in ASIACCS ’11:
Proceedings of the 6th ACM Symposium on Information, Computer and
Communications Security, Hong Kong, China, March 2011, pp. 30–40.

[6] E. Buchanan, R. Roemer, H. Shacham, and S. Savage, “When good in-
structions go bad: Generalizing return-oriented programming to RISC,”
in CCS ’08: Proceedings of the 15th ACM Conference on Computer and
Communications Security, October 2008, pp. 27–38.

[7] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and
M. Payer, “Control-flow integrity: Precision, security, and performance,”
ACM Computing Surveys (CSUR), vol. 50, no. 1, p. 16, 2017.

[8] N. Burow, X. Zhang, and M. Payer, “SoK: Shining light on shadow
stacks,” in SP ’19: Proceedings of the 2019 IEEE Symposium on Security
and Privacy, San Francisco, CA, USA, May 2019, pp. 985–999.

[9] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-control-
data attacks are realistic threats,” in SSYM ’05: Proceedings of the 14th
Conference on USENIX Security Symposium - Volume 14, Baltimore,
MD, USA, 2005.

[10] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, “Pointguard: Protecting
pointers from buffer overflow vulnerabilities,” in SSYM ’03: Proceedings
of the 12th Conference on USENIX Security Symposium - Volume 12,
Washington, DC, USA, 2003.

[11] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic, “Hard-
Bound: architectural support for spatial safety of the C programming
language,” in ASPLOS XIII: Proceedings of the 13th International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2008.

[12] U. Drepper, “Security enhancements in redhat enterprise Linux
(beside SELinux),” 2005. [Online]. Available: https://akkadia.org/
drepper/nonselsec.pdf

[13] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar, T. Tang, H. Shrobe,
S. Sidiroglou-Douskos, M. Rinard, and H. Okhravi, “Missing the
point(er): On the effectiveness of code pointer integrity,” in SP ’15:
Proceedings of the 2015 IEEE Symposium on Security and Privacy,
San Jose, CA, USA, 2015, pp. 781–796.

[14] M. Gallagher, L. Biernacki, S. Chen, Z. B. Aweke, S. F. Yitbarek, M. T.
Aga, A. Harris, Z. Xu, B. Kasikci, V. Bertacco, S. Malik, M. Tiwari, and
T. Austin, “Morpheus: A vulnerability-tolerant secure architecture based
on ensembles of moving target defenses with churn,” in ASPLOS ’19:
Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
Providence, RI, USA, 2019, pp. 469–484.

[15] S. J. Ghangro, “Block ciphers for low energy,” Ph.D. dissertation, KU
Leuven, July 2017. [Online]. Available: https://www.esat.kuleuven.be/
cosic/publications/thesis-293.pdf

[16] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: Overcoming control-flow integrity,” in SP ’14: Proceedings of
the 2014 IEEE Symposium on Security and Privacy, San Jose, CA, USA,
May 2014, pp. 575–589.

[17] GoogleProjectZero, “Examining pointer authentication on the iphone
XS,” 2019. [Online]. Available: https://googleprojectzero.blogspot.com/
2019/02/examining-pointer-authentication-on.html

13

https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/enhancing-memory-safety
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/enhancing-memory-safety
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20memory%20tagging.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20memory%20tagging.pdf
https://akkadia.org/drepper/nonselsec.pdf
https://akkadia.org/drepper/nonselsec.pdf
https://www.esat.kuleuven.be/cosic/publications/thesis-293.pdf
https://www.esat.kuleuven.be/cosic/publications/thesis-293.pdf
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html

[18] R. H. Gumpertz, “Combining tags with error codes,” in ISCA ’83:
Proceedings of the 10th Annual International Symposium on Computer
Architecture, Stockholm, Sweden, 1983, pp. 160–165.

[19] M. R. Guthaus, J. E. Stine, S. Ataei, B. Chen, B. Wu, and M. Sar-
war, “OpenRAM: An open-source memory compiler,” in ICCAD ’16:
Proceedings of the 35th International Conference on Computer-Aided
Design, Austin, TX, USA, 2016.

[20] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-control data
attacks,” in SP ’16: Proceedings of the 2016 IEEE Symposium on
Security and Privacy, San Jose, CA, USA, May 2016, pp. 969–986.

[21] Intel, “Intel control-flow enforcement technology preview,”
2017. [Online]. Available: https://software.intel.com/sites/default/files/
managed/4d/2a/control-flow-enforcement-technology-preview.pdf

[22] International standardization working group for the programming lan-
guage C, “ISO/IEC 9899:202x. ISO/IEC,” http://www.open-std.org/
jtc1/sc22/wg14/www/docs/n2346.pdf, 2019, [Online; accessed 01-May-
2021].

[23] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer, “Block oriented
programming: Automating data-only attacks,” in CCS ’18: Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, Toronto, Canada, 2018, pp. 1868–1882.

[24] M. Kayaalp, M. Ozsoy, N. Abu-Ghazaleh, and D. Ponomarev, “Branch
regulation: Low-overhead protection from code reuse attacks,” in
ISCA ’12: Proceedings of the 39th Annual International Symposium on
Computer Architecture, Portland, OR, USA, 2012, pp. 94–105.

[25] Y. Kim, J. Lee, and H. Kim, “Hardware-based always-on heap memory
safety,” in MICRO-53: Proceedings of the 53nd Annual IEEE/ACM
International Symposium on Microarchitecture, Global Online Event,
2020, pp. 1153–1166.

[26] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing
them: An experimental study of dram disturbance errors,” in ISCA ’14:
Proceeding of the 41st Annual International Symposium on Computer
Architecuture, 2014, p. 361–372.

[27] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” in SP ’19: Proceedings of the 40th
IEEE Symposium on Security and Privacy, May 2019.

[28] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-pointer integrity,” in OSDI’14: Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation, 2014,
pp. 147–163.

[29] C. Lattner and V. Adve, “LLVM: a compilation framework for lifelong
program analysis transformation,” in CGO ’04: Proceedings of the
International Symposium on Code Generation and Optimization, San
Jose, CA, USA, 2004, pp. 75–86.

[30] H. Liljestrand, T. Nyman, K. Wang, C. C. Perez, J.-E. Ekberg, and
N. Asokan, “PAC it up: Towards pointer integrity using ARM pointer
authentication,” in Proceedings of the 28th USENIX Security Symposium,
Santa Clara, CA, USA, August 2019, pp. 177–194.

[31] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières, “CCFI:
Cryptographically enforced control flow integrity,” in CCS ’15: Pro-
ceedings of the 22Nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, Colorado, USA, 2015, pp. 941–951.

[32] D. Molka, D. Hackenberg, R. Schöne, and M. S. Müller, “Characterizing
the energy consumption of data transfers and arithmetic operations on
x86 64 processors,” in Proceedings of the International Conference on
Green Computing, Chicago, IL, USA, 2010, pp. 123–133.

[33] T. Nyman, J.-E. Ekberg, L. Davi, and N. Asokan, “CFI CaRE: Hardware-
supported call and return enforcement for commercial microcontrollers,”
in RAID ’17: Proceedings of the International Symposium on Research
in Attacks, Intrusions and Defenses, 2017, pp. 259–284.

[34] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer, “Intel
mpx explained: A cross-layer analysis of the intel mpx system stack,”
Proceedings of the ACM on Measurement and Analysis of Computing
Systems, vol. 2, no. 2, p. 28, 2018.

[35] Oracle, “Hardware-assisted checking using silicon secured memory
(SSM),” 2015. [Online]. Available: https://docs.oracle.com/cd/E37069
01/html/E37085/gphwb.html

[36] J. Pewny, P. Koppe, and T. Holz, “STEROIDS for DOPed applications: A
compiler for automated data-oriented programming,” in EuroS&P ’19:
Proceedings of the 2019 IEEE European Symposium on Security and
Privacy, Stockholm, Sweden, June 2019.

[37] Qualcomm Technologies Inc, “Pointer authentication on ARMv8.3,”
2017. [Online]. Available: https://www.qualcomm.com/media/
documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf

[38] H. Sasaki, M. A. Arroyo, M. T. I. Ziad, K. Bhat, K. Sinha, and
S. Sethumadhavan, “Practical byte-granular memory blacklisting using
Califorms,” in MICRO-52: Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, Columbus, OH, USA,
October 2019, pp. 558–571.

[39] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz, “Counterfeit object-oriented programming: On the difficulty
of preventing code reuse attacks in C++ applications,” in SP ’15:
Proceedings of the 2015 IEEE Symposium on Security and Privacy,
Oakland, CA, USA, 2015, pp. 745–762.

[40] K. Serebryany, E. Stepanov, A. Shlyapnikov, V. Tsyrklevich, and
D. Vyukov, “Memory tagging and how it improves C/C++ memory
safety,” arXiv.org, February 2018.

[41] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in CCS ’07: Proceedings of
the 14th ACM Conference on Computer and Communications Security,
Alexandria, VA, USA, 2007, pp. 552–561.

[42] V. Shanbhogue, D. Gupta, and R. Sahita, “Security analysis of processor
instruction set architecture for enforcing control-flow integrity,” in
HASP ’19: Proceedings of the 8th International Workshop on Hardware
and Architectural Support for Security and Privacy, Phoenix, AZ, USA,
June 2019.

[43] R. Sharifi and A. Venkat, “CHEx86: Context-sensitive enforcement of
memory safety via microcode-enabled capabilities,” in ISCA ’20: Pro-
ceedings of the 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture, Valencia, Spain, June 2020, pp. 762–775.

[44] K. Sinha and S. Sethumadhavan, “Practical memory safety with REST,”
in ISCA ’18: Proceedings of the 45th Annual International Symposium
on Computer Architecture, Los Angeles, CA, USA, 2018, pp. 600–611.

[45] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” in SP ’13: Proceedings
of the 2013 IEEE Symposium on Security and Privacy, Berkeley, CA,
USA, May 2013, pp. 574–588.

[46] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and
Y. Paek, “HDFI: Hardware-assisted data-flow isolation,” in SP ’16:
Proceedings of the 2016 IEEE Symposium on Security and Privacy,
May 2016, pp. 1–17.

[47] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal war in
memory,” in SP ’13: Proceedings of the 2013 IEEE Symposium on
Security and Privacy, San Francisco, CA, USA, 2013, pp. 48–62.

[48] A. Tang, S. Sethumadhavan, and S. Stolfo, “CLKSCREW: Exposing
the perils of security-oblivious energy management,” in SEC ’17:
Proceedings of the 26th USENIX Conference on Security Symposium,
Vancouver, BC, Canada, 2017, pp. 1057–1074.

[49] M. Tarek Ibn Ziad, M. A. Arroyo, E. Manzhosov, R. Piersma, and
S. Sethumadhavan, “No-FAT: Architectural support for low overhead
memory safety checks,” in ISCA-48: Proceedings of the 48th Annual
International Symposium on Computer Architecture, Worldwide Event,
June 2021.

[50] N. Tuck, B. Calder, and G. Varghese, “Hardware and binary modification
support for code pointer protection from buffer overflow,” in MICRO-37:
Proceedings of the 37th International Symposium on Microarchitecture,
Portland, OR, USA, 2004, pp. 209–220.

[51] G. Venkataramani, B. Roemer, Y. Solihin, and M. Prvulovic, “Mem-
tracker: Efficient and programmable support for memory access moni-
toring and debugging,” in HPCA ’07: Proceedings of the 2007 IEEE 13th
International Symposium on High Performance Computer Architecture,
Scottsdale, AZ, USA, 2007, pp. 273–284.

[52] R. N. M. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. An-
derson, D. Chisnall, N. H. Dave, B. Davis, K. Gudka, B. Laurie, S. J.
Murdoch, R. M. Norton, M. Roe, S. D. Son, and M. Vadera, “CHERI:
A hybrid capability-system architecture for scalable software compart-
mentalization,” in SP ’15: Proceedings of the 2015 IEEE Symposium on
Security and Privacy, San Jose, CA, USA, May 2015, pp. 20–37.

[53] J. Woodruff, A. Joannou, H. Xia, A. Fox, R. Norton, D. Chisnall,
B. Davis, K. Gudka, N. W. Filardo, , A. T. Markettos, M. Roe, P. G.
Neumann, R. N. M. Watson, and S. Moore, “CHERI concentrate:
practical compressed capabilities,” IEEE Transactions on Computers,
vol. 68, no. 10, pp. 1455–1469, October 2019.

14

https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2346.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2346.pdf
https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html
https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf

	Introduction
	Background
	Memory Corruption Attacks
	Threat Model

	The ZeRØ System Overview
	Instruction Set Extensions
	Microarchitecture Design
	Software Design
	Memory Management
	Compiler Support
	Operating System Support

	Security Analysis
	Security Discussion
	Limitations

	Evaluation
	Hardware Measurements
	Software Performance
	Comparison with Prior Work.

	Related Work
	Conclusion
	Acknowledgment
	References

