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Presenter
Presentation Notes
Hello everyone, 

I’m Miguel Arroyo and together with Mohamed we will be presenting No-FAT…Architectural Support for Low Overhead Memory Safety Checks. 

No-FAT is a joint work with Mohamed Tarek, Evgeny Manzhosov, Ryan Piersma, and Simha Sethumadhavan. 




Memory Safety is a serious problem!
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The lack of memory safety is a very serious problem.

People can be discriminated against...



Memory Safety is a serious problem!
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Spied on...



Memory Safety is a serious problem!
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And targeted due to memory safety vulnerabilities.

Unfortunately, this problem remains as current today as it has ever been!
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It’s easy to make mistakes

Presenter
Presentation Notes
The reality is that memory safety vulnerabilities are very easy for developers to introduce.
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It’s easy to make mistakes

SEGFAULT!

Presenter
Presentation Notes
Just what is memory safety?

Put simply, it’s when you access memory in an unintended way.

Think back to any time you mistakenly overflowed a buffer or forgot to free memory. 

To put into context just how common these vulnerabilities are ... 




Prevalence of Memory Safety Vulns
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Microsoft Product CVEs

Source: Matt Miller, Microsoft Security Response Center (MSRC) - BlueHat 2019

Presenter
Presentation Notes
…, consider that 70 percent of all the CVEs in Microsoft products each year are memory safety related.




Prevalence of Memory Safety Vulns
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Google OSS-Fuzz bugs from 2016-2018.

Source: https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html

Microsoft Product CVEs

Source: Matt Miller, Microsoft Security Response Center (MSRC) - BlueHat 2019

Presenter
Presentation Notes
Not to pick on Microsoft….but, Open Source software doesn’t fare any better!

With over 29% of bugs found by Google’s OSS-Fuzz being memory safety related.


https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html
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So it seems that memory safety vulnerabilities are a big deal.






ATTACKERS

MEMORY SAFETY
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AND what makes the issue of memory safety so prominent is that attackers love memory safety vulnerabilities. 



Attackers prefer Memory Safety Vulns

11
Source: Google Project Zero, 0day "In the Wild" spreadsheet. Last updated: April 2020 

Zero-day “in the wild” exploits 
from 2014-2020  

Presenter
Presentation Notes
Data about zero-day exploits that were detected "in the wild" from Google Project zero show that the overwhelming majority are memory safety ones!
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ALL HopE is Not 
Lost!

Presenter
Presentation Notes
But all hope is not lost! There have been some promising trends in software engineering. 

So the question is can we take advantage any of these trends to fix the memory safety problem?




Modern 
software design 
is useful for 
security
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The short answer is YES! 

Modern software design is useful for security



Modern software design is useful for security
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Increasing adoption of binning allocators

• Maintains memory locality.

• Implicit lookup of allocation information.

Presenter
Presentation Notes
The key software design that we focus on in this work is the increasing adoption of binning allocators. 

They are typically used to enhance performance by maintaining memory locality. 



Modern software design is useful for security
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Increasing adoption of binning allocators

• Maintains memory locality.

• Implicit lookup of allocation information.

tcMalloc

Presenter
Presentation Notes
Examples for binning allocators include Jemalloc (which is used in FireFox and as a default allocator on FreeBSD), the mi-malloc from Microsoft, and Tcmalloc form Google.  

In this work, we will show how making the hardware aware of binning memory allocator primitives can have multiple benefits. 



The benefits of No-FAT

Fuzz-Testing

Resilience
to Spectre-V1

10X speedup over ASan

Bounds aware memory 
accesses

Runtime Security
8% overheads for spatial & 
temporal memory safety 
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To name a few, it can be used to improve fuzz testing, runtime security, and resilience to Spectre-V1 attacks.  



Binning Memory Allocators 
101
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Lets start with a crash course on binning memory allocators 



Binning Memory Allocators

18

40. int main() {
41. char* ptr = malloc(12);  
42. …   
50.   }

…
Virtual Memory

Presenter
Presentation Notes
Lets consider a simple program with one main function that is defined in line 40 for example. 

Here, the program wants to reserve some memory to operate on. 



Binning Memory Allocators
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40. int main() {
41. char* ptr = malloc(12);  
42. …   
50.   }

…
Virtual Memory

Presenter
Presentation Notes
SO it invokes malloc (as shown in line number 41) and gives it the required size. 
Lets say 12.  




Binning Memory Allocators
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40. int main() {
41. char* ptr = malloc(12);  
42. …   
50.   }

Memory is 
requested by 
the allocator. 

…
Virtual Memory

Presenter
Presentation Notes
This call to malloc() invokes the memory allocator, which is supposed to allocate 12 bytes on the heap …

and return the starting address to the program to continue execution. 




Binning Memory Allocators
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40. int main() {
41. char* ptr = malloc(12);  
42. …   
50.   }

Memory is 
divided into 
bins.

A

B

C

Bins

…
Virtual Memory

Presenter
Presentation Notes
In order to accelerate the malloc functionality, binning memory allocators divide the virtual memory into different regions called bins. 



A

B

C

Bins

16B

32B

64B

…

Sizes

Virtual Memory

Binning Memory Allocators
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40. int main() {
41. char* ptr = malloc(12);  
42. …   
50.   }

Each bin is 
associated with 
a size.

Presenter
Presentation Notes
Each bin is used to allocate objects of a specific size. 





A

B

C

Bins

16B

32B

64B

…

Sizes

Virtual Memory

Binning Memory Allocators
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40. int main() {
41. char* ptr = malloc(12);  
42. …   
50.   }

12Bptr

Presenter
Presentation Notes
For example, allocation requests that are less than 16 bytes … 



A

B

C

Bins

16B

32B

64B

…

Sizes

Virtual Memory

Binning Memory Allocators
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40. int main() {
41. char* ptr = malloc(12);  
42. …   
50.   }

12Bptr

Presenter
Presentation Notes
… come from region A.

Allocation requests that are greater than 16 bytes and less than 32 bytes come from region B and so on. 

As each region holds allocations of the same rounded size, … 




A

B

C

Bins

16B

32B

64B

…

Sizes

Virtual Memory

Binning Memory Allocators
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40. int main() {
41. char* ptr = malloc(12);  
42. …   
50.   }

12Bptr

Given any pointer, we can derive its 
allocation size and base address. 

Presenter
Presentation Notes
Given any pointer, we can derive its allocation size and base address. 

The allocation size is the size used in this particular region whereas the base address is the nearest size-aligned address in the same region. 

Please bear with me, I will flesh out those calculations in a bit.




From Bins to Security
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Presenter
Presentation Notes
So for now, it seems like binning allocators have some nice properties, but how can we turn those properties into a security primitive? 



Spatial Memory Safety (Inter-Object)
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Object 1 Object 2

Virtual Memory

Bin A

The Problem

Presenter
Presentation Notes
Lets start with a simple security problem: Inter-object spatial memory safety.





Spatial Memory Safety (Inter-Object)
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Object 2

Virtual Memory

Bin A Object 1

Adjacent objects can overflow into each 
other.

The Problem

Presenter
Presentation Notes
In this case, adjacent objects can overflow into each other, resulting in information leakage, memory corruption, or even control-flow hijacking. 

The question now is: How can No-FAT detect this problem?



Spatial Memory Safety (Inter-Object)
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40. int main() {
41. char* ptr = malloc(12);  
42. ptr[1] = ‘A’;
43. …
50.  }

Presenter
Presentation Notes
Lets explain this further by going back again to our example. 



Spatial Memory Safety (Inter-Object)
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40. int main() {
41. char* ptr = malloc(12);  
42. ptr[1] = ‘A’;
43. …
50.  }

store ptr[1],‘A’

Presenter
Presentation Notes
Let us assume that after the memory is allocated, our program issues a store instruction to write the value ‘A’ to ptr[1]. 



Spatial Memory Safety (Inter-Object)

31

40. int main() {
41. char* ptr = malloc(12);  
42. ptr[1] = ‘A’;
43. …
50.  }

s_store ptr[1],‘A’,ptrtrusted_base

We add one extra operand for loads/stores.

Presenter
Presentation Notes
With No-FAT, every load/store instruction will have one more operand, which we call the trusted base. 



Spatial Memory Safety (Inter-Object)
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40. int main() {
41. char* ptr = malloc(12);  
42. ptr[1] = ‘A’;
43. …
50.  }

s_store ptr[1],‘A’,ptrtrusted_base

ptrtrusted_base

Presenter
Presentation Notes
This operand is propagated using the compiler ..  



Spatial Memory Safety (Inter-Object)
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40. int main() {
41. char* ptr = malloc(12);  
42. ptr[1] = ‘A’;
43. …
50.  }

s_store ptr[1],‘A’,ptrtrusted_baseptrtrusted_base
The compiler propagates the allocation base address.

Presenter
Presentation Notes
from the malloc output to the store input. 



Spatial Memory Safety (Inter-Object)
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40. int main() {
41. char* ptr = malloc(12);  
42. ptr[1] = ‘A’;
43. …
50.  }

s_store ptr[1],‘A’,ptrtrusted_base

Presenter
Presentation Notes
Now it is fairly easy for the store instruction to verify access bounds.



Spatial Memory Safety (Inter-Object)
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s_store ptr[1],‘A’,ptrtrusted_base

Presenter
Presentation Notes
The steps are straightforward. 



Spatial Memory Safety (Inter-Object)
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s_store ptr[1],‘A’,ptrtrusted_base

ptrtrusted_baseptr[1]

Presenter
Presentation Notes
The hardware first extracts the trusted base and the address (which is ptr[1]) and … 



Spatial Memory Safety (Inter-Object)
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s_store ptr[1],‘A’,ptrtrusted_base

ptrtrusted_baseptr[1]offset

Presenter
Presentation Notes
subtracts them from each other to get the offset.



Spatial Memory Safety (Inter-Object)
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s_store ptr[1],‘A’,ptrtrusted_base

ptrtrusted_baseptr[1]offset

size getSize(             )ptrtrusted_base

Presenter
Presentation Notes
Then, it retrieves the size of the trusted base pointer using the binning allocator metadata. 



Spatial Memory Safety (Inter-Object)
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s_store ptr[1],‘A’,ptrtrusted_base

ptrtrusted_baseptr[1]offset

size getSize(             )ptrtrusted_base

Bounds Check

offset size< ?

Presenter
Presentation Notes
Finally it compares the offset to the size and flags a violation if the offset is not less than the size. 



Spatial Memory Safety (Inter-Object)

40

s_store ptr[1],‘A’,ptrtrusted_base

ptrtrusted_baseptr[1]offset

size getSize(             )ptrtrusted_base

Bounds Check

offset < ?size

The allocation size information is made available to 
the hardware to verify memory accesses. 

Presenter
Presentation Notes
So in short, we make the allocation sizes information available to the hardware to help it verify memory accesses. 



Spatial Memory Safety (Inter-Object)
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40. int main() {
41. char* ptr = malloc(12);  
42. ptr[1] = ‘A’;
43. …
50.  }

s_store ptr[1],‘A’,ptrtrusted_base

ptrtrusted_base

Presenter
Presentation Notes
Now lets make the example a bit more complicated. 



Spatial Memory Safety (Inter-Object)
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40. int main() {
41. char* ptr = malloc(12);  
42. ptr[1] = ‘A’;
43. …
49.     foo(ptr);
50.  }

s_store ptr[1],‘A’,ptrtrusted_base

ptrtrusted_base

Let’s pass the pointer to another context (e.g., foo).

Presenter
Presentation Notes
We will take the pointer and pass it to another function (Foo) via a direct call as shown in line number 49. 



Spatial Memory Safety (Inter-Object)
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40. int main() {
41. char* ptr = malloc(12);  
42. ptr[1] = ‘A’;
43. …
49.     foo(ptr);
50.  }
51. void Foo (char* xptr){
52. … 
53. xptr[7] = ‘B’; 
54. …
60.  }

s_store ptr[1],‘A’,ptrtrusted_base

ptrtrusted_base

Presenter
Presentation Notes
Inside Foo, we will write some value ‘B’ to the xptr[7] as shown in line number 53. 



Spatial Memory Safety (Inter-Object)

44

40. int main() {
41. char* ptr = malloc(12);  
42. ptr[1] = ‘A’;
43. …
49.     foo(ptr);
50.  }
51. void Foo (char* xptr){
52. … 
53. xptr[7] = ‘B’; 
54. …
60.  }

s_store ptr[1],‘A’,ptrtrusted_base

ptrtrusted_base

s_store xptr[7],‘A’,xptrtrusted_base

Presenter
Presentation Notes
So, Similar to the main function, the store instruction from line 53 should use a trusted base as a third operand. 



Spatial Memory Safety (Inter-Object)
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40. int main() {
41. char* ptr = malloc(12);  
42. ptr[1] = ‘A’;
43. …
49.     foo(ptr);
50.  }
51. void Foo (char* xptr){
52. … 
53. xptr[7] = ‘B’; 
54. …
60.  }

s_store ptr[1],‘A’,ptrtrusted_base

ptrtrusted_base

s_store xptr[7],‘A’,xptrtrusted_base

How do we get this?

Presenter
Presentation Notes
The question now is: How can we get xptr_trusted_base?

Well, we can pass it explicitly as a second argument to Foo, but that solution will change the function signature and break binary compatibility. 




Spatial Memory Safety (Inter-Object)
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40. int main() {
41. char* ptr = malloc(12);  
42. ptr[1] = ‘A’;
43. …
49.     foo(ptr);
50.  }
51. void Foo (char* xptr){
52. … 
53. xptr[7] = ‘B’; 
54. …
60.  }

s_store ptr[1],‘A’,ptrtrusted_base

ptrtrusted_base

s_store xptr[7],‘A’,xptrtrusted_base
xptrtrusted_base  compBase(xptr[7]) 

Presenter
Presentation Notes
Instead, we just recompute it using a compBase instruction. 





Spatial Memory Safety (Inter-Object)
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xptrtrusted_base  compBase(xptr[7]) 

Presenter
Presentation Notes
This instruction takes advantage of the binning memory allocators as follows



Spatial Memory Safety (Inter-Object)
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xptrtrusted_base  compBase(xptr[7]) 

xptr log2(S) where S is the size of the bins. Bin >>

Presenter
Presentation Notes
First, it gets the region of this pointer using a simple shift operation. 




Spatial Memory Safety (Inter-Object)
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xptrtrusted_base  compBase(xptr[7]) 

xptr log2(S) where S is the size of the bins. Bin

size getSize(     )Bin

>>

Presenter
Presentation Notes
Then it retrieves the region size from the binning allocator metadata. 




(1/     )size

Spatial Memory Safety (Inter-Object)
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xptrtrusted_base  compBase(xptr[7]) 

xptr log2(S) where S is the size of the bins. Bin

size getSize(     )Bin

xptrtrusted_base xptr⌊ ⌋

>>

size

Presenter
Presentation Notes
Finally, it computes the base by dividing the pointer by the size, rounding it down, and multiplying it by the size again to get rid of the reminder. 




(1/     )size

Spatial Memory Safety (Inter-Object)
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xptrtrusted_base  compBase(xptr[7]) 

xptr log2(S) where S is the size of the bins. Bin

size getSize(     )Bin

xptrtrusted_base xptr⌊ ⌋

>>

size

Base pointer is implicitly derived!

Presenter
Presentation Notes
Now, we have our new base address without passing any explicit operands between functions. 



Spatial Memory Safety (Inter-Object)
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40. int main() {
41. char* ptr = malloc(12);  
42. ptr[1] = ‘A’;
43. …
49.    foo(ptr);
50.  }

s_store ptr[1],‘A’,ptrtrusted_base

ptrtrusted_base

Presenter
Presentation Notes
One might ask the following question, 



Spatial Memory Safety (Inter-Object)
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40. int main() {
41. char* ptr = malloc(12);  
42. ptr[1] = ‘A’;
43. ptr = ptr + 100;
44.    …
49.    foo(ptr);
50.  }

s_store ptr[1],‘A’,ptrtrusted_base

ptrtrusted_base

Pointer arithmetic can push the pointer out-of-bounds before 
calling foo!

Presenter
Presentation Notes
what is going to happen if a pointer arithmetic operation in the main function pushes the pointer out-of-bounds before passing it to Foo?

In this case, Foo will receive an out-of-bounds pointer and will compute a wrong trusted base. 



Spatial Memory Safety (Inter-Object)
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40. int main() {
41. char* ptr = malloc(12);  
42. ptr[1] = ‘A’;
43. ptr = ptr + 100;
44.    

45. …
49.    foo(ptr);
50.  }

s_store ptr[1],‘A’,ptrtrusted_base

ptrtrusted_base

verifyBounds ptr,ptrtrusted_base

Verify the bounds of all pointers that escape to 
memory (or another function).

Presenter
Presentation Notes
To avoid such problematic situations, we always verify the bounds of all pointers that escape to memory (or to another function). 

We do so with a simple instruction that takes the escaped pointer and its original trusted base as inputs. 

If the pointer is already out-of-bounds, we flag a violation at line 44 and it will not be passed to Foo.

If the pointer is in-bounds, we are guaranteed that foo will receive a valid input. 

This way we cover inter-object spatial memory safety. 




Spatial Memory Safety (Intra-Object)
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The Problem

Presenter
Presentation Notes
But what about intra-object memory safety?




Spatial Memory Safety (Intra-Object)
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typedef struct {
char a; 
double b;
char c[3];____
void (*fp)();

} A_t;

The Problem

Adjacent fields can be overflowed into.

Presenter
Presentation Notes
Adjacent fields within the same allocation can be overflowed into. 



Spatial Memory Safety (Intra-Object)
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typedef struct {
char a; 
double b;
char c[3];____
void (*fp)();

} A_t;

typedef struct {
char c[3];____

} A_t_c;

typedef struct {
char a; 
double b;
A_t_c *c_ptr;_
void (*fp)();

} A_t;

The Buf2Ptr transformation promotes intra-allocation 
buffers to standalone allocations.

Presenter
Presentation Notes
To achieve fine-grained intra-object memory safety, No-FAT adopts the buffer to pointer promotion trick. 

We simply promote every intra-allocation buffer to a standalone allocation and replace it with a pointer using source-to-source transformation. 

This way all intra-object buffers will be protected using the regular No-FAT protection. 



Temporal Memory Safety
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Presenter
Presentation Notes
For completeness, No-FAT also supports a degree of temporal memory safety. 





Temporal Memory Safety
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malloc
#1

0x00004000

Time

A

The Problem

Presenter
Presentation Notes
As you may know, for performance reasons, … 



Temporal Memory Safety
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malloc
#1

0x00004000

Time

A free

The Problem

Presenter
Presentation Notes
Memory regions that are recently freed, …  



Temporal Memory Safety
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malloc
#1

0x00004000

Time

A free

0x00004000malloc
#2

The Problem

B

Presenter
Presentation Notes
Are typically assigned to new allocation requests. 



Temporal Memory Safety
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malloc
#1

0x00004000

Time

A free

0x00004000

Different allocations 
reuse old memory!

malloc
#2

The Problem

B

Presenter
Presentation Notes
That means a dangling pointer that used to point to the old allocation can still be used to access the new allocation causing severe security threats. 



Temporal Memory Safety
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malloc
#1

0xbeef4000

Time

A free

0xcafe4000malloc
#2

B

No-FAT generates a 16-bit random 
tag that is added to every pointer.

Presenter
Presentation Notes
To fix this issue, we add a random tag for every pointer upon malloc and verify it vs. the base tag upon memory access. 

Dangling pointers can then be detected as they are likely to have a different tag than the one used by the newly allocated object. 

Now as we understand the basic components of our proposal, Mohamed will walk you through the needed architectural changes for enabling No-FAT. 





ISA Extensions
64

No
FAT

Presenter
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Hello everyone! I am Mohamed Tarek and I will be your host during the second part of this talk. 

In order to implement No-FAT, we add the following ISA extensions.  



ISA Extensions

65

s_store Addr, Dest, BaseAddr

s_load  Addr, Src,  BaseAddr

Presenter
Presentation Notes
We use new store and load instructions with three register operands to hold the memory address, destination or source operand, and the trusted base address. 



ISA Extensions

66

s_store Addr, Dest, BaseAddr

s_load  Addr, Src,  BaseAddr

verifyBounds Addr, BaseAddr

Presenter
Presentation Notes
We also use a verifyBounds instruction in order to verify the allocation bounds of pointers that are stored in memory or moved from one function to another. 



ISA Extensions

67

s_store Addr, Dest, BaseAddr

s_load  Addr, Src,  BaseAddr

verifyBounds Addr, BaseAddr

Exceptions are thrown in the case 
that the target memory address 

does not match BaseAddr.  

Presenter
Presentation Notes
Exceptions are thrown in the case that the target memory address does not match BaseAddress.  



ISA Extensions
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s_store Addr, Dest, BaseAddr

s_load  Addr, Src,  BaseAddr

verifyBounds Addr, BaseAddr

compBase Addr, Dest

Exceptions are thrown in the case 
that the target memory address 

does not match BaseAddr.  

Presenter
Presentation Notes
Finally, we use compBase instruction to compute the trusted base address whenever a pointer is loaded from memory. 



Microarchitectural Overview
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No
FAT

Presenter
Presentation Notes
At the microarchitectural level, 



Microarchitectural Overview
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Core L1-D L2 DRAM

Presenter
Presentation Notes
No-FAT requires minimal modifications.



Microarchitectural Overview
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Core L1-D L2 DRAM

Traditional memory safety techniques frequently access 
per-pointer or per-allocation metadata.

Presenter
Presentation Notes
Unlike traditional memory safety techniques which frequently access per-pointer or per-allocation metadata that has to be stored in the entire memory hierarchy … Increasing both memory and   … 




Microarchitectural Overview
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Core L1-D L2 DRAM

Traditional memory safety techniques frequently access 
per-pointer or per-allocation metadata.

Presenter
Presentation Notes
Communication overheads, No-FAT requires no metadata.




Microarchitectural Overview
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Core L1-D L2 DRAM

NO changes to the memory subsystems! 

Presenter
Presentation Notes
As a result no changes to the memory subsystem are required at all. 




Microarchitectural Overview
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Core L1-D L2 DRAM

Presenter
Presentation Notes
Instead, No-FAT changes are internal to the core. 



Microarchitectural Overview
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Core L1-D L2 DRAM

1-KiB Memory Allocation 
Sizes Table (MAST)

Presenter
Presentation Notes
For example, in order to make allocations sizes available to the hardware, we use a 1-Kilo byte memory allocation sizes table (or MAST) to keep track of the allocation sizes used by the memory allocator in different regions. 

This way we avoid accessing the allocator metadata to retrieve the region size for every memory access. 

As the size of this table is small, it is easily swapped out and in upon process context switch. 



Microarchitectural Overview
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Core L1-D L2 DRAM

Bounds Checker

Presenter
Presentation Notes
Next, No-Fat uses a bounds checker to validate all memory accesses, as we described earlier in this talk. 



Microarchitectural Overview
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Core L1-D L2 DRAM

Dedicated Register File

Presenter
Presentation Notes
Finally, No-Fat uses a dedicated register file for base addresses to avoid adding register pressure on the regular register file. 



Resilience to Common Exploits
78

No
FAT

Presenter
Presentation Notes
Now as we explained how No-FAT is implemented, it is time to put the security benefits in more concrete terms. 

So, Let's look at a handful of common exploits and how No-FAT mitigates them.



Resilience to Common Exploits
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Buffer A Buffer B

1
Cannot corrupt 
memory.

Buffer 
Over-/Under-flows

Presenter
Presentation Notes
Here, we have a classic buffer overflow. 

We have two buffers side-by-side, A and B, and we want to overwrite B from a pointer in A. 



Resilience to Common Exploits
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Buffer A Buffer B
Original:

Buffer A Buffer B

1
Cannot corrupt 
memory.

Buffer 
Over-/Under-flows

Presenter
Presentation Notes
Under normal conditions, the overflow would reliably corrupt B.



Resilience to Common Exploits
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Buffer A Buffer B
Original:

Buffer A Buffer B

Buffer A Buffer B
No-FAT:

1
Cannot corrupt 
memory.

Buffer 
Over-/Under-flows

Exception!

Presenter
Presentation Notes
With No-FAT in place, an exception will be thrown when buffer A goes out of its own bounds. 

That is because our new store instructions are aware of the allocation bounds.



Resilience to Common Exploits
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1
Cannot corrupt 
memory.

Buffer 
Over-/Under-flows

2
Each allocation 
instance is tagged 
randomly.

Use-after-free

Tag is propagated with the allocation base address.

Virtual AddressTag

Presenter
Presentation Notes
Another very common exploit technique involves leveraging use-after-frees. 

As No-FAT uses a random 16-bit tag for every new allocation, dangling pointers that used to point to the old allocation will be detected AS they are likely to have different tags. 



Resilience to Common Exploits
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1
Cannot corrupt 
memory.

Buffer 
Over-/Under-flows

2 Use-after-free 3 Spectre-V1

// mispredicted branch
if (i < sizeof(a)) {

secret = a[i];

// secret is leaked
val = b[64 * secret]; 

}

Each allocation 
instance is tagged 
randomly.

Presenter
Presentation Notes
Finally, let's look at speculative execution attacks. The code snippet here is a minimal example of Spectre-v1 (which is also known as bounds-checking bypass).
 
Normally, the load from a[i] to secret can be reliably accessed with an out of bound index i. 




Resilience to Common Exploits
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1
Cannot corrupt 
memory.

Buffer 
Over-/Under-flows

2 Use-after-free 3 Spectre-V1

// mispredicted branch
if (i < sizeof(a)) {

secret = a[i];

// secret is leaked
val = b[64 * secret]; 

}

Each allocation 
instance is tagged 
randomly.

Speculative loads are 
aware of the legitimate 
allocation-bounds.

Presenter
Presentation Notes
However, with No-FAT in place, Speculative loads are aware of the legitimate allocation-bounds.
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1
Cannot corrupt 
memory.

Buffer 
Over-/Under-flows

2 Use-after-free 3
Speculative loads are 
aware of the legitimate 
allocation-bounds.

Spectre-V1

// mispredicted branch
if (i < sizeof(a)) {

secret = a[i];

// secret is leaked
val = b[64 * secret]; 

}

• Speculative out-of-
bounds loads are not 
allowed to change the 
cache state or forward 
values to dependent 
instructions.

Each allocation 
instance is tagged 
randomly.

Presenter
Presentation Notes
As a result, Speculative out-of-bounds loads are not allowed to change the cache state or forward values to dependent instructions, …. 
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1
Cannot corrupt 
memory.

Buffer 
Over-/Under-flows

2 Use-after-free 3
Speculative loads are 
aware of the legitimate 
allocation-bounds.

Spectre-V1

// mispredicted branch
if (i < sizeof(a)) {

secret = a[i];

// secret is leaked
val = b[64 * secret]; 

}

• Speculative out-of-
bounds loads are not 
allowed to change the 
cache state or forward 
values to dependent 
instructions.

Detected!

Each allocation 
instance is tagged 
randomly.

Presenter
Presentation Notes
effectively breaking the attack.
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Presenter
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Now, let us talk about the performance cost of No-FAT
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Hardware  Modifications
Our measurements show minimal latency/area/power overheads.

Presenter
Presentation Notes
We first evaluate the hardware cost of our modifications. 

Our VLSI results show that No-FAT has minimal latency, area, and power overheads. 
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Software Modifications

• Our special loads/stores do not change the binary size.

Hardware  Modifications
Our measurements show minimal latency/area/power overheads.

Presenter
Presentation Notes
In terms of the software modifications cost, our special loads and stores do not change the binary size as they just replace traditional memory access instructions. 
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Software Modifications

• Our special loads/stores do not change the binary size.

• We verify pointer bounds before storing them to memory.

Hardware  Modifications
Our measurements show minimal latency/area/power overheads.

Presenter
Presentation Notes
However, we still need to verify the pointer bounds before storing them to memory … 
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Software Modifications

• Our special loads/stores do not change the binary size.

• We verify pointer bounds before storing them to memory.

• We compute the allocation base address of arbitrary pointers 

when they are loaded from memory. 

Hardware  Modifications
Our measurements show minimal latency/area/power overheads.

Presenter
Presentation Notes
And compute the allocation base address of arbitrary pointers when they are loaded from memory. 
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Experimental Setup
We emulate No-FAT on x86_64 by modifying LLVM to emit 
new instructions.

• CompBase is emulated using two multiplications 
followed by a store.

• VerifyBounds is emulated using dummy stores.

Presenter
Presentation Notes
To emulate the performance overheads of these extra operations on a real x86_64 machine, we wrote an LLVM compiler pass to emit dummy instructions to replace CompBase and VerifyBounds.

We use two multiplications followed by a store to emulate the steps of CompBase, which we explained earlier. 

And we emulate VerifyBounds with dummy stores. 

The reason why we use dummy store instructions is simply to prevent the compiler optimizations from removing them. 

Now, I am going to show you the slowdowns for using No-FAT. 




Performance Results (x86_64)

93

0.00

0.50

1.00

1.50

2.00

2.50

gMean

8%

0
1
2
3
4
5

N
or

m
. E

xe
c.

No-FAT

Presenter
Presentation Notes
Using the SPEC 2017 benchmarks on a real machine, No-FAT causes 8% slowdowns on-average compared to baseline execution. 
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Presenter
Presentation Notes
To further understand the source of such slowdowns, we re-run our experiments with just the binning memory allocator: without performing any extra memory safety operations. The performance overheads of organizing heap, stack and global memory into bins is 4%.
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100%

Presenter
Presentation Notes
To show the performance benefits of our hardware design, we also run a software only version of No-FAT, which introduces a 100% performance degradation.
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Presenter
Presentation Notes
Running the state-of-the-art address sanitizer on the same benchmarks causes one hundred and seven percent overheads, meaning that No-FAT can provide almost 10x speedup when used for fuzzing software during testing. 
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Presenter
Presentation Notes
For completeness, we also evaluated Intel-mpx the state-of-the-art commercial solution for memory safety. 

Again No-FAT offers much lower overheads AND better security. 
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We reduce the average runtime overheads of full 
memory safety from 100% to 8%!

Presenter
Presentation Notes
So in short No-Fat reduces the average runtime overheads of full memory safety from 100% to 8%!
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But what about the other memory safety techniques?

Well, the key point of any memory safety technique is how it handles its metadata (or the allocation information) and its security coverage. 
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ConcernsMetadata

Memory Tagging N-bits per pointer & allocation Spatial & temporal safety 
limited by tag width

Presenter
Presentation Notes
Memory tagging techniques like ARM MTE and SPARC ADI assign colors to every memory allocation and store the color in the pointer upper bits to avoid changing the pointer layout. 

Unfortunately, the security coverage of memory tagging techniques is limited by the tag width, which is typically 4 or 8-bits. 
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ConcernsMetadata

Tripwires Susceptible to non-adjacent 
overflowsN-bits per allocation

Memory Tagging N-bits per pointer & allocation Spatial & temporal safety 
limited by tag width

Presenter
Presentation Notes
On the other hand, Tripwires-based solutions like REST and Califorms completely avoid the per-pointer metadata and embed the per-allocation metadata within program data itself. 

While those techniques have comparable performance overheads to No-FAT, they have lower security coverage as they are Susceptible to non-adjacent overflows.
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ConcernsMetadata

Explicit Base & Bounds Breaks compatibility with the rest of 
the system (eg. unprotected libraries).N-bits per pointer or allocation

Tripwires Susceptible to non-adjacent 
overflowsN-bits per allocation

Memory Tagging N-bits per pointer & allocation Spatial & temporal safety 
limited by tag width

Presenter
Presentation Notes
Explicit base & bounds techniques such as CHERI increase pointer width by extra bits to store the allocation bounds information. 

While such techniques provide high security coverage, the additional per pointer metadata makes pointer operations more expensive. 

Moreover, they tend to break compatibility with the rest of the system, for example unprotected libraries.
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ConcernsMetadata

No-FAT Requires binning allocatorFixed (1K) bits per process

Explicit Base & Bounds Breaks compatibility with the rest of 
the system (eg. unprotected libraries).N-bits per pointer or allocation

Tripwires Susceptible to non-adjacent 
overflowsN-bits per allocation

Memory Tagging N-bits per pointer & allocation Spatial & temporal safety 
limited by tag width

Presenter
Presentation Notes
In contrast, No-FAT has a fixed size metadata table per the entire process while maintaining security against adjacent and non-adjacent overflows when a binning allocator is used.
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Having no metadata

 Improves Fuzzing
 Improves Runtime Security
 Improves Resilience to Spectre-V1No

FAT

Presenter
Presentation Notes
Due to its metadaless nature and simple hardware support, No-FAT improves fuzz testing, runtime security, and resilience against Spectre-V1 with just 8% runtime overheads and no changes to the memory subsystem. 
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Having no metadata

 Improves Fuzzing
 Improves Runtime Security
 Improves Resilience to Spectre-V1No

FAT

ZeRØ
https://isca21.arroyo.me

For applications where an 8% overhead is 
too much, checkout ZeRØ.

Presenter
Presentation Notes
If end-users are not willing to pay the 8% overheads for complete memory safety, lightweight exploit mitigation techniques such as ZeRO can be used. 

So please check out our other ISCA 2021 paper that provides resilient operation under pointer integrity attacks with zero runtime overheads. 

https://isca21.arroyo.me/
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Having no metadata

 Improves Fuzzing
 Improves Runtime Security
 Improves Resilience to Spectre-V1

The benefits of having allocation sizes as an 
architectural feature can go well beyond memory 
safety!

No
FAT

Presenter
Presentation Notes
Finally, keep in mind that the No-FAT benefits go well beyond memory safety!

Having the allocation size as an architectural feature can help accelerate garbage collectors for memory safe languages AND enhancing the predictability of memory prefetchers and DRAM controllers. 

That’s it for today. Thank you for listening. Please reach out if you have any questions! 
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