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Hello all...Welcome! 

Today...I’ll be talking about security for Resource Constrained Cyber-Physical systems. 

I will be highlighting...WHY...it is an important and challenging topic of research

AND what my contributions thus far have been.




The Birth of Cyber-Physical Systems

21800
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Over the past centuries...MANY purely mechanical devices have evolved to become computer controlled.  

For example...the automobile...has transitioned from being a “horseless carriage”...



The Birth of Cyber-Physical Systems
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To today’s near autonomous vehicles. 

Cars are just ONE OF MANY examples of Cyber-Physical systems.



CPSs are everywhere.
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Life saving medical devices, drones for package delivery, and robots for manufacturing are all prime examples. 
Cyber-physical systems are critical to many aspects of our daily lives...changing the way we interact with the world.

But, just what exactly are Cyber-Physical Systems?



What are Cyber-Physical Systems?
A composition of physical processes, sensors, actuators, and computational units.
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These are systems that are composed of physical processes, sensors, actuators, and computational units all working in unison to make up what we call a CPS.



What are Cyber-Physical Systems?
A CPS operates in a feedback loop between the cyber and physical domains.
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A CPS operates in a feedback loop between the cyber and physical domains. 

The upper half of this figure represents the cyber domain, where information is exchanged, and control actions computed.

The lower half represents the physical domain, where control decisions are translated into physical actions and energy is transferred.

The sensed information is used to compute an actuation that causes a physical process to evolve, which is then sensed and so on.... 

This feedback loop is used to try and ensure the physical process’s stability and safety.






CPS security is important.
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So why is the security of these systems important? Why does it warrant our attention?




Why is CPS security important?
Physical interactions can damage the environment and harm people.
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Due to their control over high-impact assets, CPS are prime targets for adversaries looking to wreak havoc. 
As we’ve seen over the span of the last 20 years, attacks against CPS are very much a realistic threat. 
One major reason why CPS security is especially important is due to their physical nature. 
Unlike traditional cyber systems, the physical interactions of a CPS can damage the environment and harm people. 
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Why is CPS security important?
CPSs are becoming increasingly pervasive across multiple sectors.

Source: IC Insights, The McClean Report 2018
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Moreover, CPSs are becoming increasingly pervasive. As I mentioned, these systems are quickly becoming intertwined in our everyday lives.

The increased spending in various sectors highlights the growth of the overall CPS market. 
The allure of smart cities, factories, homes, and autonomous vehicles will no doubt continue to drive expansion in this domain showing no signs of slowing down.



Why is CPS security important?
Physical systems have become increasingly dependent on software.

10

Software makes up a 
large portion of a 

CPS.
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One of the main factors that has led to the current state of affairs is a CPS’s increased reliance on software and their integration with larger more traditional IT infrastructure.

The electronics and the corresponding software that drive CPS make up a LARGE FRACTION OF THE TOTAL SYSTEM both in terms of components and cost.



Why is CPS security important?
Physical systems have become increasingly dependent on software.
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Software makes up a 
large portion of a 

CPS.

over 50%!

Automotive electronics cost 
as a share of total car cost.

Source: Deloitte, Semiconductors – The Next Wave 2019
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To put this into perspective, lets look at some data from the automotive industry.
 
Most of the automotive innovations taking place today arise from electronics rather than mechanics. 

As a result, the cost contribution of automotive electronics is projected to ultimately account for roughly 50% by 2030. 




Why is CPS security important?
CPS software has become increasingly complex.
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Source: http://bit.ly/KIB_linescode
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With growth usually comes complexity... 

As more of a CPS becomes computerized, so does the complexity of the code that runs on them.

We can see that CPS such as airplanes and cars are AS COMPLEX IF NOT MORE COMPLEX than even large general-purpose software like operating systems.




Why is CPS security important?
CPS software has become increasingly complex.
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Source: http://bit.ly/KIB_linescode
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This increased complexity leads to higher bug density and ultimately a larger attack surface.

Given these factors, it shouldn’t come as a shock that CPS security is something we should all care about.



Security can be efficiently integrated by 
leveraging fundamental physical properties, & 
tailoring and extending age-old abstractions in 

computing.
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Thesis Statement
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This brings me to my thesis which posits that security can be efficiently integrated into resource constrained CPS by leveraging fundamental physical properties, & tailoring and extending age-old abstractions in computing.



My contributions to CPS security
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Over the years I’ve been part of several contributions working toward securing CPS software.




My contributions to CPS security
A two-pronged approach against software threats

16

Leveraging Physical Properties
• May help reduce performance overheads.
• Makes retrofitting into existing systems more practical.

Revisiting Computing Abstractions
• Allows for design space exploration tailored to CPSs.
• Can be applicable in the broader general-purpose domain.
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We’ve taken a two-pronged approach to addressing software threats.

The first aims to LEVERAGE the physical properties of cyber-physical systems to strengthen software and reduce performance overheads. 

The second, revisits computing abstractions in computer architecture, namely the address space and caches, to allow for more tailored design space exploration. 
This has led to efficient designs that are not only applicable within the scope of CPS, but also the general-purpose domain.



My contributions to CPS security
An overview of publications
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1. YOLO: You Only Live Once
A mitigation that leverages inertia to periodically wipe an attacker from 
a system.

2. PAS: Phantom Address Space
An architectural primitive for diversified execution.

3. CALIFORMS: Cache Line Formats
A mechanism for fine-grained inline metadata storage.
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Today, I’ll talk about three main contributions that fit these categories.

The first, YOLO is a mitigation that leverages the physical property of inertia to periodically wipe an attacker from the system.

Second, PAS revisits the concept of the address space to define a new architectural primitive for diversified execution.

Finally, CALIFORMS, revisits how memory is stored in caches to provide a mechanism for fine-grained inline metadata storage.



CPS security is challenging.
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Now…If making these systems secure were easy, we wouldn’t be having this talk. Before jumping into the details, we need to take a closer look at just what makes CPS security challenging.



What makes CPS security challenging?
Resource constraints & strict requirements leave little room for security.
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Cyber-physical systems are faced with strict requirements and resource constraints. 
Unfortunately, this leaves little room for security.
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Heterogeneous
A wide variety of processors, sensors, and actuators leads to patchy 
software support.

What makes CPS security challenging?
Resource constraints & strict requirements leave little room for security.
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More concretely, CPS tend to be quite heterogeneous.
They integrate a wide variety of processors, sensors, and actuators. 
This diversity leads to patchy software support as developers ultimately choose to implement the minimum set of common features across devices.
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Real Time
Actions must be taken within a maximum specified deadline 
leaving little extra time for other tasks.

Heterogeneous
A wide variety of processors, sensors, and actuators leads to patchy 
software support.

What makes CPS security challenging?
Resource constraints & strict requirements leave little room for security.
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The strict timing requirements demanded by working with the physical world leave little extra time for non-control tasks. 
These deadlines severely hamper the amount of work that can be dedicated to “non-essential” tasks such as security.
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Real Time
Actions must be taken within a maximum specified deadline 
leaving little extra time for other tasks.

Heterogeneous
A wide variety of processors, sensors, and actuators leads to patchy 
software support.

Limited Resources
Systems have smaller memory, limited data-processing capabilities, 
and stripped-down functionality. 

What makes CPS security challenging?
Resource constraints & strict requirements leave little room for security.

Presenter
Presentation Notes
Finally, all resources considered non-essential to the main control task are usually eliminated to reduce power consumption, space, and ultimately cost from the final system. 
As a result, CPS have smaller memory, limited data-processing capabilities, and stripped down functionality compared to the broader general purpose computing space PRIMARILY due to cost and energy budgets.
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Real Time
Actions must be taken within a maximum specified deadline 
leaving little extra time for other tasks.

Heterogeneous
A wide variety of processors, sensors, and actuators leads to patchy 
software support.

Limited Resources
Systems have smaller memory, limited data-processing capabilities, 
and stripped-down functionality. 

What makes CPS security challenging?
Resource constraints & strict requirements leave little room for security.
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Ultimately, it is these limited resources that put the largest strain on system designers on whether they can implement security. 
The limited resources impose a bottleneck on the porting of existing security techniques from the general-purpose realm and on the development of new security techniques for CPS.

It’s for this reason that it warrants the most attention and is the main topic my work focuses on. 

Next, we’ll quantify the limitations of these systems to highlight the challenges faced with deploying security.



Unit shipments comparison between 
Application and Microcontroller class processors

Source: Statista [67-69]

What makes CPS security challenging?
CPSs predominantly rely on microcontroller class processors.
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We start by looking at the class of processors used in a wide variety of CPSs. 
We sample the devices offered by the top semiconductor manufacturers targeting various CPS related sectors. 
For instance, NXP, a leading semiconductor company, markets their microcontroller processor family for everything from power management, elevator controls, automobiles, to smart meters. 

What we find is that the overwhelming majority of CPSs rely on microcontroller class processors.

Additionally, in contrast to application processors, microcontrollers are the most pervasive computational resource available. 
Data shows that their market penetration significantly outpaces application class processors, predominantly found in mobile phones, laptops, desktops, and servers. 

It is to say, better security for microcontrollers even within the scope of CPSs can have a wide reaching effect.



Microcontroller revenue by processor architecture

Source: Statista – MCU Market Revenues from 2005 to 2020

What makes CPS security challenging?
Microcontroller class processors used by CPSs have limited performance 
and functionality.
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While, applications processors have transitioned to 64-bit architectures, microcontrollers have only recently made the jump to 32-bit. 
As a result, microcontroller class processors used by CPSs have limited performance and functionality compared to their application class brethren.
For example, they usually run at significantly lower clock speeds and have poor isolation primitives.

Most importantly, their use of a 32-bit architecture means that many of the security techniques being developed today that exploit 64-bit application processors cannot be easily ported.




Source: Digi-Key

What makes CPS security challenging?
The cost sensitivity of CPS is an important factor in selection of 
microcontroller class processors. 
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As previously mentioned, the cost sensitivity of CPS is an important factor in their design. 
A microcontroller’s lower cost in addition to determinism for timing tasks drives their adoption in the CPS space….Ultimately, making security more challenging.

To put into perspective the price disparity of microcontrollers vs application processors we focus on the 32-bit market. 
Here we compare ARM 32-bit application processors and microcontrollers currently in production using data from Digi-Key, one of the worlds leading electronic component distributors. 
The average price and processor speeds are plotted. 



Microcontrollers are much cheaper!

Source: Digi-Key
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What makes CPS security challenging?
The cost sensitivity of CPS is an important factor in selection of 
microcontroller class processors. 

Presenter
Presentation Notes
As the data shows, microcontrollers are significantly less expensive than application processors for the same frequency.
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Source: Bungo – The ARM Architecture 2015

What makes CPS security challenging?
The energy sensitivity of CPS is an important factor in selection of 
microcontroller class processors. 

28

Presenter
Presentation Notes
Not only are microcontrollers cheaper, but they are also more energy efficient…Another important factor in their design which ultimately affects security.

The following figure compares different families of ARM 32-bit application processors and microcontrollers in terms of frequency and power. 
The results show that microcontrollers sip power even compared to low-end application processors.



Source: NXP

What makes CPS security challenging?
Memory is a scarce resource across the spectrum of microcontrollers.
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Perhaps the biggest resource constraint for microcontrollers is memory….AND Arguably, the most important computational resource.

Unfortunately, memory is INCREDIBLY scare across the spectrum of microcontroller offerings. 

Here, we use NXP’s line of automotive centric processors as a representative sample for typical microcontroller memory resources.



RAM < 2MB!

Flash < 16MB!

Source: NXP
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What makes CPS security challenging?
Memory is a scarce resource across the spectrum of microcontrollers.
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As we can see, they ultimately have < 16MB of flash and < 2MB of RAM. 
In stark contrast, application processors typically have memory in the range of gigabytes. 

The most important implication of limited memory in microcontrollers, is that it severely hampers what can be done in terms of security. 

Many techniques ultimately require additional instrumentation (which consumes flash memory) or metadata (which consumes precious RAM).



CPSs need 
low overhead deployable security.
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This is all to say…that there is a need for low overhead deployable security in the CPS space…



My contributions to CPS security
An overview of publications
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1. YOLO: You Only Live Once
A mitigation that leverages inertia to periodically wipe an attacker from 
a system.

2. PAS: Phantom Address Space
An architectural primitive for diversified execution.

3. CALIFORMS: Cache Line Formats
A mechanism for fine-grained inline metadata storage.
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To understand the motivation behind the contributions in this thesis….



We focus on software threats.
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We need to understand why we’ve chosen to focus primarily on software threats…



Cyber

Cyber-Physical

Physical
34

Why focus on software threats?
The cyber layer is the most complex part of a CPS.
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First, the cyber layer is easily the most complex part of a CPS, due to the growing reliance on electronics and software as we mentioned earlier.



Cyber

Cyber-Physical

Physical
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Why focus on software threats?
The cyber layer is the most complex part of a CPS.

Threats predominantly target 
controllers & software.

Presenter
Presentation Notes
The cyber layer predominantly focuses on threats targeting controller software, or the “brains” of a CPS’s decision making.



External

Cyber

Why focus on software threats?
Memory safety vulnerabilities can target both the supervisory and main controllers.

36

Presenter
Presentation Notes
It is here where we find the resource constrained microcontrollers.
The major threat faced here is that of memory safety, which has plagued the general-purpose computing space over the last 25 years. 
These threats can target both the supervisory and main controllers of a CPS. 



Why focus on software threats?
CPSs are predominantely written in memory unsafe languages.
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Source: Embedded Insights Survey 2019
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Much like general-purpose software, 80% of embedded software is predominantly written in C/C++ due to strict performance and space requirements. As many are already aware, these language suffer from various memory safety bugs.



Why focus on software threats?
Memory Safety is the predominant source of vulnerabilities (ie. CVEs).
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Source: Matt Miller, Microsoft Security Response Center (MSRC) - BlueHat 2019
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This is important because memory safety tends to be the predominant source of vulnerabilities in programs.

While there is no public data for CPS software in particular, it stands to reason that it should follow similar trends as seen in general-purpose software. 
Consider that 70 percent of all the CVEs in Microsoft products EACH YEAR...are memory safety related.




Why focus on software threats?
Memory Safety CVEs are heavily exploited.
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Source: Matt Miller, Microsoft Security Response Center (MSRC) - BlueHat 2019
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What makes the issue so PROMINENT is that attackers LOVE memory safety vulnerabilities. 
Data about CVEs EXPLOITED in Microsoft products show that the OVERWHELMING MAJORITY are memory safety related!



Why focus on software threats?
Software provides many entrypoints for an attacker.

40

SW is a large 
portion of a 

CPS.
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When compared to the physical and cyber-physical threats facing CPS, software provides many entry points for an attacker.

When we couple together the fact that software makes up a large portion of an overall system…



Why focus on software threats?
Software provides many entrypoints for an attacker.
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SW is 
increasingly 

complex.

SW is a large 
portion of a 

CPS.
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that said software is becoming increasingly complex…



Why focus on software threats?
Software provides many entrypoints for an attacker.

42

SW is 
increasingly 

complex.

SW is a large 
portion of a 

CPS.
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pervasive.
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the fact that cyber-physical systems themselves are becoming increasingly pervasive…



Why focus on software threats?
Software provides many entrypoints for an attacker.
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SW is 
increasingly 

complex.

SW is a large 
portion of a 

CPS.

CPSs are 
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Microcontroller 
features are limited.
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and that the microcontrollers they rely on have a limited set of features…



Why focus on software threats?
Software provides many entrypoints for an attacker.
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Microcontroller 
features are limited.
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we have the perfect recipe for seeing many more bugs arise.
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SW is 
increasingly 

complex.
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CPS.
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More Vulns

Why focus on software threats?
Software provides many entrypoints for an attacker.

Microcontroller 
features are limited.
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Which as I’ve mentioned leads to vulnerabilities that can be exploited by an attacker.



Cyber

Cyber-Physical

Physical

Threats predominantly 
target sensors.
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Why focus on software threats?
(Cyber-)Physical threats are more limited in scope.

Presenter
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With regards to threats on other layers of a CPS, the physical and cyber-physical layers predominantly focus on threats targeting sensors, something that traditional IT systems do not have to contend with. 
For completeness, I’ll briefly discuss why at least in their current state these threats have limited applicability.



External

Cyber-Physical
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Why focus on software threats?
Sensors can be manipulated by exploiting how they observe physical phenomena.
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Sensors can be manipulated by exploiting how they observe physical phenomena.

Signal injection attacks refer to those that manipulate the internals of a sensor to convert the stimulus from an analog signal to a digital signal used by the controller.

For example, electromagnetic interference can cause the internal analog signals to be processed incorrectly.
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Why focus on software threats?
Sensors can be manipulated by exploiting how they observe physical phenomena.

Presenter
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Stimulus injection attacks refer to those that manipulate the underlying stimulus (or physical energy) being measured by a sensor. 

For example, acoustic interference can be used to influence sensor readings in medical devices, drones, and autonomous vehicles.




Why focus on software threats?
Software vulnerabilites are more flexibile for an attacker.
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Fortunately or Unfortunately depending on who you are, these physical vulnerabilities have several limitations compared to more flexible software ones.

Software vulnerabilities typically mean a system can be remotely accessed as opposed to requiring proximity for a physical vulnerability.



Why focus on software threats?
Software vulnerabilites are more flexibile for an attacker.
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This has the secondary effect of resulting in wider coverage...for example, one can potentially exploit many more systems at scale…think bot-nets.



Why focus on software threats?
Software vulnerabilites are more flexibile for an attacker.
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Software can also provide an extra level of privacy as well since more methods to achieve anonymity exist. 



Why focus on software threats?
Software vulnerabilites are more flexibile for an attacker.
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Finally, software attacks also tend to provide an additional level of control that isn’t possible with existing physical attacks. 
This may be important depending on the attacker’s goal.



Why focus on software threats?
Software vulnerabilites are more flexibile for an attacker.
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It is for these reasons, that I argue that software will continue to be preferred by attackers for the foreseeable future. 
Providing greater flexibility than state-of-the art physical vulnerabilities.




CPSs need 
low overhead deployable software security.
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In summary, there is CURRENTLY a SPECIFIC need for low overhead deployable SOFTWARE security in the CPS space.



My contributions to CPS security
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That brings me back to my contributions to CPS security which are aimed at addressing these types of threats.




My contributions to CPS security
An overview of publications
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1. YOLO: You Only Live Once
A mitigation that leverages inertia to periodically wipe an attacker from 
a system.

2. PAS: Phantom Address Space
An architectural primitive for diversified execution.

3. CALIFORMS: Cache Line Formats
A mechanism for fine-grained inline metadata storage.
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Next, we’ll dive into the details of each highlighting how they not only address software threats, but how they are tailored to address the resource constraints of CPS devices.

We start with YOLO.



YOLO
You Only Live Once 
Appears as 

YOLO: Frequently Resetting Cyber-Physical Systems for Security
Arroyo, M., Tarek Ibn Ziad, M., Kobayashi, H., Yang, J., Sethumadhavan, S.
SPIE Defense & Commercial Sensing 2019
(DOI: 10.1117/12.2518909)

Patent
US10417425
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Short for You Only Live Once.

https://doi.org/10.1117/12.2518909


YOLO in a nutshell
A flexible framework for wiping an attacker from a system.
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1.Reset

Presenter
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In a nutshell, YOLO provides a flexible framework for wiping an attacker from a system. There are two steps to the YOLO approach…first Resets…



YOLO in a nutshell
A flexible framework for wiping an attacker from a system.
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1.Reset
2.Diversify
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and the second diversify. Why these two steps exactly I will explain next.



Why does YOLO perform resets?
Bounds the time an adversary can affect the system.

Program

Program
Snapshot

Time
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So why does YOLO perform resets?
The reset step prevents an adversary’s ability to corrupt the system indefinitely. It forces a bounded time horizon over which an attacker can affect the system.

To illustrate consider a running program shown in the blue box. A program snapshot, shown in green, is a securely verified version of the code taken at some predefined moment in time.



Why does YOLO perform resets?
Bounds the time an adversary can affect the system.
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After some time, let’s say an adversary manages to find a bug/vulnerability and successfully exploits the system.



Why does YOLO perform resets?
Bounds the time an adversary can affect the system.

Program

Program
Snapshot

Program

Program
Snapshot

Attack

Time

62

Presenter
Presentation Notes
Without any other countermeasures, the attacker may stay in the system indefinitely…



Why does YOLO perform resets?
Bounds the time an adversary can affect the system.
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This is where the reset comes in…it wipes the attacker from the system by restoring the clean program snapshot from which to restart execution.



Why does YOLO perform resets?
Bounds the time an adversary can affect the system.
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Why does YOLO perform resets?
Bounds the time an adversary can affect the system.
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Frequent resets lead to stronger security.

Presenter
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Intuitively, as you might imagine, resetting more often provides stronger security. Ultimately, how often resets are triggered will depend on the stability of the physical process.

As long as this high-level property of the reset is ensured, the details and actual implementation strategy of the reset mechanism can vary depending on the capabilities and requirements of the CPS.




Why does YOLO need to diversify?
Prevents a system from compromise by the same method continuously.

Program

Bug
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So why does YOLO also need the diversify step? Isn’t the reset sufficient?

Unfortunately, when dealing with an intelligent adversary, once they figure out a vulnerability/bug exists then it’s game over. They can reuse the same bug until it is patched in some way.

Diversification is used to introduce randomness and prevent the system from being compromised by the same method continuously, thus reducing the chance of attacker success.

To illustrate what I mean consider a simple program with some buggy code shown in yellow.



Why does YOLO need to diversify?
Prevents a system from compromise by the same method continuously.
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Through diversification, we conceptually generate a different program variant that moves the buggy code around randomly…



Why does YOLO need to diversify?
Prevents a system from compromise by the same method continuously.
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essentially playing a shell game with the attacker to keep them from guessing correctly and ultimately failing to reliably exploit the system.
Like with resets, there are many possible implementation strategies depending on the system capabilities and the level of security that is necessary.



Why does YOLO work for CPSs?
Leverages physical properties to cope with reset & diversify mechanisms.

Inertia
Allows for operation during resets & diversification.
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So what makes YOLO unique and well suited for cyber-physical systems?
It is primarily the fact that it leverages many physical properties to cope with resets & diversification.

For example, inertia allows for a CPS to continue to operate even when events are missed due to resets and/or diversification.
Think about how an ice skater is able to continue gliding around a rink long after they’ve stopped pushing.



Why does YOLO work for CPSs?
Leverages physical properties to cope with reset & diversify mechanisms.

Inertia
Allows for operation during resets & diversification.

Observability
Feedback loop allows state to be learned by reobserving state.
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Second, a CPS’s observability makes it such that the state of the system can be learned by re-observing state via the system’s feedback loop. 
Essentially, recovering any state that may have been wiped by a reset.



Why does YOLO work for CPSs?
Leverages physical properties to cope with reset & diversify mechanisms.

Inertia
Allows for operation during resets & diversification.

Observability
Feedback loop allows state to be learned by reobserving state.

Physically Bounded
An attacker needs time to affect the behavior of the system.
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Finally, the bounded time horizon that YOLO achieves via its resets is effective as cyber-physical systems are bound by the laws of physics. 
It is to say, an attack needs time to affect the behavior of the system. 
YOLO’s proactive resets therefore impose a limit on what the attacker can do.



How was YOLO evaluated?
We used two real-world systems.
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Engine Control Unit (ECU) Flight Control Unit (FCU)
Special thanks to Columbia FSAE!
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We experimentally evaluate YOLO on two popular real-world CPSs with different inertia, safety requirements, and control complexity. 

Using an engine controller unit (ECU) and measurements from a real combustion engine, we discuss and measure the performance and safety impacts. 
Additionally, we also perform measurements on a drone’s flight control unit (FCU) that involves more sophisticated control. 

Overall, we find that YOLO-ized versions of these systems tolerate multiple frequent resets safely.

https://youtu.be/_j6Zqco7Le0


How was YOLO evaluated?
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Engine Control Unit (ECU)
Reset every 125ms

Flight Control Unit (FCU)
Reset every 1s

Presenter
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While difficult to appreciate visually, here we show that we can reset the ECU every 125ms without affecting engine speed.

For the flight controller, we show that we can reset the system every second without affecting the stability of the quadcopter in flight. 
Here’s a short clip of one of our flights out in Riverside park.



Why is YOLO well suited for constrained devices?
Inertia is used in place of additional resources to maintain system stability.

Legacy Systems
YOLO can be easily retrofitted into existing systems.

Cost Savings
YOLO does not require redundant resources to maintain system stability & security.
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What separates YOLO from other work is its use of inertia in place of additional redundant resources to maintain system stability while the controller may be performing resets & diversification. 

This allows YOLO to save on cost and, equally important, allows it to be easily retrofitted into existing systems. 

For example, the ECU reset mechanism we used was incredibly simple and involved just toggling the ECU’s “reset” pin with a simple clocked circuit.



My contributions to CPS security
An overview of publications
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1. YOLO: You Only Live Once
A mitigation that leverages inertia to periodically wipe an attacker from 
a system.

2. PAS: Phantom Address Space
An architectural primitive for diversified execution.

3. CALIFORMS: Cache Line Formats
A mechanism for fine-grained inline metadata storage.
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Next, we’ll look at the category of contributions which revisits core computing abstractions.
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1. YOLO: You Only Live Once
A mitigation that leverages inertia to periodically wipe an attacker from 
a system.

2. PAS: Phantom Address Space
An architectural primitive for diversified execution.

3. CALIFORMS: Cache Line Formats
A mechanism for fine-grained inline metadata storage.
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We start with PAS…



PAS
Phantom Address Space 

Currently under submission.

Patent
US62904887
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Or the Phantom Address Space.



PAS in a nutshell
An architectural concept to efficiently enable N-variant execution.
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Safety and fault tolerance have a long history in the CPS domain. The concept of N-variant execution, or N-version programming, has seen widespread use in many CPSs such as airplanes. 

It is a reliability design principle that allows software to continue to provide expected outputs even when software errors are triggered. 

To achieve this, multiple copies of a program are executed and their outputs checked for inconsistencies.
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PAS in a nutshell
An architectural concept to efficiently enable N-variant execution.

Precise Failure
Memory Duplication
Execution Duplication
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This simple yet powerful technique provides precise failure at the cost of duplicating memory and execution. 
This duplication makes this technique quite expensive.

A natural question is then, how can we make this technique less costly while making minimal compromises especially if our goal is to use it for security?
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This is where PAS comes in. 

PAS is an architectural concept that can be used to provide an alternative to classic N-variant systems by almost eliminating the overheads associated with replicated execution. 

The basic idea is to provide different “code views” or “phantom copies” WITHOUT duplicating memory or execution. 

PAS achieves this with modifications to memory addressing functions.
A selector component orchestrates the control flow of the program between the two copies, effectively resulting in only one copy being executed at any given time.




PAS in a nutshell
An architectural concept to efficiently enable N-variant execution.
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This approach sacrifices some of the failure precision in order to effectively reduce the runtime overhead close to baseline execution. 

The low overhead of PAS makes it ideal for the resource constraints of CPS.

PAS makes N-variant like execution feasible on systems where it may NOT have been.
Additionally, the “phantom” abstraction can be layered with more traditional N-variant execution to increase reliability by using more “copies”.
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PAS in a nutshell
Multiple phantom addresses alias to an instruction.
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The core concept that makes PAS possible is the “Phantom Address Space”. Within the Phantom Address Space multiple “phantom addresses” are made to alias to an instruction in the virtual address space. Essentially, adding an extra layer of abstraction on-top of the fundamental concept of the virtual address space.

This idea is similar to how multiple virtual addresses can point to the same physical addresses, but with two key differences.
First, in PAS the N phantom addresses correspond to the same virtual address, not a physical address; 
And second, the phantom addresses can be arbitrarily offset. They do not need to be page-aligned as required for data synonyms. 

The first difference ensures that PAS can be handled at the application level without requiring significant changes to the OS, while the second is key to providing security.



How are phantoms constructed?
Phantoms are logically displaced relative to the original program.
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So how exactly are these phantoms constructed?

The virtual and physical address mappings remain untouched, with no duplication that would increase code size.
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Phantoms are logically displaced (by the domain offset) relative to each other within the phantom address space.
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A second offset, we refer to as the security shift is used so that the various phantom copies are not perfectly overlapped.

As a result, the instruction offsets between basic blocks (or BBLs as shown here) are thus distinct.

We then use these phantoms to diversify execution.




How does PAS diversify execution?
It diversifies the path of execution at every basic block.

Program Control Flow Graph

BBL AP0

main(...)

BBL AP1

exit()

diversify()True False
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On every control transfer we randomly pick between the many phantom copies to continue execution.



How does PAS diversify execution?
It diversifies the path of execution at every basic block.

Program Control Flow Graph

BBL AP0

main(...)

BBL AP1

exit()

diversify()True False

Phantoms are functionally 
equivalent.
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As the phantoms are functionally equivalent, it doesn’t matter which one we pick.
However, since the addresses of these basic blocks are unique, this will force the attacker to gamble when constructing their exploit payload.





How does PAS diversify execution?
It diversifies the path of execution at every basic block.

Program Control Flow Graph

BBL AP0

main(...)

BBL AP1

exit()
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Thwarts many Code-Reuse 

Attacks (CRAs).
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This diversification mechanism as we will see is well suited to thwarting code-reuse attacks or CRAs.
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How does PAS protect against CRAs?
Phantoms force an adversary to guess the execution path.
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Let’s walk through a few examples of how normal & PAS execution work, both without and with a CRA taking place.

We start with normal baseline execution.
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Let’s say we start at Instruction 10.

In step 1 Inst 10 changes the control-flow to a basic block starting with Inst 71. 
The basic block executes...
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And in step 2, the control flow is transferred back to the original target (Inst 11 via a ret instruction).
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Let’s look at it now during a code reuse attack…
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Step 1 remains the same...
But now, the attacker uses a memory safety vulnerability to overwrite the return address stored on the stack.
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This diverts the control flow at step 2 to go from the original Inst 11 to the attacker specified Inst 24 upon executing the return. 
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This starts off their exploit “gadget chain” as its commonly referred, which they can use to perform arbitrary computations.



How does PAS protect against CRAs?
Phantoms force an adversary to guess the execution path.
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Let’s now look at the normal execution with PAS.

For simplicity we use a security shift, delta, of one instruction. 
Remember that each control flow instruction arbitrarily chooses what phantom to execute from. 



How does PAS protect against CRAs?
Phantoms force an adversary to guess the execution path.
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On the call in step 1, it decides to transfer execution from phantom 0 (on the left) to the phantom 1 (on the right).
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Phantoms force an adversary to guess the execution path.
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The return then transfers back.



How does PAS protect against CRAs?
Phantoms force an adversary to guess the execution path.
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Finally, let’s look at the code reuse attack with PAS. 




How does PAS protect against CRAs?
Phantoms force an adversary to guess the execution path.
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Step 1 remains the same...
Now, as the attacker cannot predict the phantom number in advance, they are forced to make a guess.




How does PAS protect against CRAs?
Phantoms force an adversary to guess the execution path.
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In this example, they supply an address from phantom 0 which is shifted by delta, the security shift. 




How does PAS protect against CRAs?
Phantoms force an adversary to guess the execution path.

Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 72 (Sub)
Inst 73 (Ret)

Inst 23 (Add)

...

Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

Inst 9 (mov)

Inst 71 (Add)

... Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 72 (Sub)
Inst 73 (Ret)

Inst 23 (Add)

Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

Inst 9 (mov)

Inst 71 (Add)

...

Inst 7 (Add)
Inst 7 (Add)δ

...

Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 72 (Sub)
Inst 73 (Ret)

Inst 23 (Add)

...

Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

Inst 9 (mov)

Inst 71 (Add)

... Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 72 (Sub)
Inst 73 (Ret)

Inst 23 (Add)

Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

Inst 9 (mov)

Inst 71 (Add)

...

Inst 7 (Add)
Inst 7 (Add)δ

...WRONG

1

2

1

2
2

Phantom 0 Phantom 1 Phantom 0 Phantom 1

Normal Execution Execution with CRA 103

Presenter
Presentation Notes
Thus, they will actually end up executing a WRONG instruction in step 2. 

IN GENERAL, in this example if the attacker makes a wrong guess, they will execute one less (or one more) instruction compared to the desired gadget. 



How does PAS precisely trap an attacker?
Code is instrumented with special instructions to throw an exception.
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Now, To further limit the attack surface, we introduce what we call TRAP instructions. These instructions are inserted at the beginning of every basic block. 

While PAS is enabled, the security shift, delta, will cause the TRAP instruction that exists in the beginning of a BBL in the original domain to appear at the end of the same BBL in the phantom domain. 

Now because programs cannot execute TRAP instructions in normal conditions as there exist no control-ﬂow transfer to them…..

we provide the ability to catch attackers that guess the incorrect diversification when they land on the TRAP instruction while targeting BBL boundaries. 



How was PAS evaluated?
We used the gem5 architectural simulator to validate correctness & performance.
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To evaluate PAS we used an architectural simulator to validate correctness and performance. 
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106

Presenter
Presentation Notes
Overall we found no performance penalty for the basic PAS and a 4% slowdown when enabling TRAP instructions on SPEC CPU2017.



Why is PAS well suited for constrained devices?
It brings efficient N-variant execution protection with minimal cost. 

Minimal Performance Impact
PAS has minimal impact on workload execution.

Memory Savings
PAS cuts down on resource duplication associated with other N-variant 
execution approaches.
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As the results show, PAS is able to provide an efficient N-variant execution protection to resource constrained devices with minimal performance impact.

This is primarily enabled by its significant memory savings by cutting down on resource duplication associated with other N-variant execution approaches.



My contributions to CPS security
An overview of publications
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1. YOLO: You Only Live Once
A mitigation that leverages inertia to periodically wipe an attacker from 
a system.

2. PAS: Phantom Address Space
An architectural primitive for diversified execution.

3. CALIFORMS: Cache Line Formats
A mechanism for fine-grained inline metadata storage.

Presenter
Presentation Notes
Finally, we’ll move onto Califorms.



CALIFORMS
Cache Line Formats
Appears as 

Practical Byte-Granular Memory Blacklisting using Califorms
Sasaki, H., Arroyo, M., Tarek Ibn Ziad, M., Koustubha, B., Sinha, K., Sethumadhavan, S.
IEEE/ACM International Symposium on Microarchitecture (MICRO) 2019
(DOI: 10.1145/3352460.3358299)

Patent
US16744922

IEEE 2019 Micro Top Picks Honorable Mention
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Or our cache line formatting mechanism...

https://doi.org/10.1145/3352460.3358299


CALIFORMS in a nutshell
A hardware primitive to encode metadata within program data.

Inline
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At its core, CALIFORMS is a hardware primitive to encode…



CALIFORMS in a nutshell
A hardware primitive to encode metadata within program data.

Inline
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or inline metadata within normal program data



Why is CALIFORMS’ inline metadata useful?
It consumes less memory and requires less memory accesses.  
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The reason this inlining is useful is because it consumes significantly less memory and requires less memory accesses saving on both time and energy.
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For example, disjoint metadata schemes, where the metadata is accessed separately from the actual program data, consumes more memory as it does not reuse naturally occurring dead space that may be part of regular data.



Why is CALIFORMS’ inline metadata useful?
It consumes less memory and requires less memory accesses.  
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 In co-joined metadata schemes, where memory is extended to hold metadata attributes for a particular memory block, again we have a similar story.



Why is CALIFORMS’ inline metadata useful?
It consumes less memory and requires less memory accesses.  
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Additionally, in contrast to inlining techniques like Califorms which require a single contiguous access to fetch metadata and data together…



Why is CALIFORMS’ inline metadata useful?
It consumes less memory and requires less memory accesses.  
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Disjoint techniques require two separate accesses, and co-joined techniques make accesses overall slower as more data needs to be fetched for each individual access.

While Califorms is applicable solely as a metadata scheme, for the purposes of this talk, we’ll focus on how it is used for security.



How is CALIFORMS used for security?
It enables an efficient memory access control mechanism.
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In general, metadata techniques can be used to enable efficient memory access control mechanisms for security.
Inline metadata blacklisting is one such technique and is the basis for how we utilize CALIFORMS for security. 

Essentially, metadata locations are used as tripwires which flag accesses to these memory regions. 
For example, a pointer is allowed to access the actual data contained in the buffer, while access to the tripwires results in an exception. 



How is CALIFORMS used for security?
It enables an efficient memory access control mechanism.
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Disjoint metadata whitelisting techniques attach a base and bounds to every pointer, bounding the region of memory they can legitimately access. 



How is CALIFORMS used for security?
It enables an efficient memory access control mechanism.
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Finally, co-joined metadata whitelisting, assigns an attribute or color to memory chunks when they are allocated, and the same color to the pointer used to access that region.


--------------------------------------------------------
Q&A 

COMPARISONS

DISJOINT – One advantage is that it allows compatibility with codes that use legacy pointer layouts. One disadvantage is that it introduces atomicity concerns potentially resulting in false positives and negatives or complicating coherence designs at the least (e.g. MPX is not thread safe).

COJOINED – One disadvantage of this technique, specifically due to inlining metadata in pointers is that it only supports 64-bit architectures. Narrower pointers would not have enough spare bits to accommodate “color/tag” information.

INLINED VS CANARY – Inlined blacklisting is very similar to contemporary canary design, but there are a few critical differences. 
First, canaries only detect overwrites, not overreads. 
Second, hardware tripwires trigger instantaneously, whereas canaries need to be periodically checked for integrity, providing a period of attack to time of use window. 
Finally, unlike hardware tripwires, canary values can be leaked or tampered, and thus mimicked. 



How is CALIFORMS used for security?
It enables an efficient memory access control mechanism.
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While other inlined metadata blacklisting techniques exist, CALIFORMS differs from other works in one key aspect—granularity. 
While other techniques blacklist memory at the cache line granularity, CALIFORMS can do so at the byte granularity by cleverly formatting cache line data.



What key insight does CALIFORMS make?
Program data naturally contains inaccessible data (i.e. dead bytes).

struct A {
char c;
/* compiler inserts padding
* bytes for alignment */
// ie. char dead_bytes[3];
int i;
char buf[64];
void (*fp)();

};
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The key insight that enables our memory savings and allows us to encode metadata within program data is the fact that “program data naturally contains inaccessible dead bytes”.

These dead spaces can occur for several reasons. 

Consider struct A as shown here. 
To satisfy C language requirements that integers should be padded to their natural size (which we assume to be four bytes here), the compiler inserts three-bytes of padding between field c and i.




How prevalent are dead bytes?
Over 40% of structs have at least one dead byte.

SPEC2006 C/C++ Benchmarks

Struct Density =  ∑i
#fields(sizeof(fieldi))/sizeof(struct)

JavaScript V8 Engine

45.7% 41.0%
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So how prevalent are these dead bytes normally? Turns out that over 40% of structs have at least one dead byte.

Shown in these figures is the struct density for SPEC2006 and the V8 Javascript Engine. 

We define the struct density to be the sum of size of each field divided by the total size of the struct.

The results reveal that 45.7% and 41% of structs within SPEC and V8, respectively, have at least one byte of padding. 

This is encouraging since even without introducing additional padding bytes (no memory overhead), we can offer protection for compound data types restricting the attack surface. When we cannot find naturally occurring dead spaces, we can manually insert them.




Why are dead bytes useful for security?
They are naturally inlined with data to provide fine-grained protection. 

Program Memory

? Fine-grained dead bytes lead to 
greater unpredictability of blacklisted locations.
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These dead bytes are key to CALIFORMS byte granular memory blacklisting as the dead bytes are naturally inlined with the data. 

The fine-grained nature of CALIFORMS leads to greater unpredictability with regards to how the “tripwires” are placed in memory, ultimately increasing its security guarantees as it makes it more likely for an attacker to “trigger” a tripwire. 



How do we encode data within dead bytes?
We use a novel cache line based encoding scheme for L1, L2 and beyond.

1 2 4 7 8

Normal

3 5 6
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Given that we have these dead bytes that can be used for security. How do we actually utilize the dead bytes to encode metadata? 

Let’s look at an example.

We refer to a cache line as normal if it has no blacklisted locations at all, like the one shown.



How do we encode data within dead bytes?
We use a novel cache line based encoding scheme for L1, L2 and beyond.
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Now, let's imagine a cache line with blacklisted locations.  





How do we encode data within dead bytes?
We use a novel cache line based encoding scheme for L1, L2 and beyond.
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We utilize a special BLOC instruction to mark the blacklisted locations. 



How do we encode data within dead bytes?
We use a novel cache line based encoding scheme for L1, L2 and beyond.
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• 12.5% memory overhead
• Minimal latency
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One simple encoding scheme to identify blacklisted locations is to use a single bit of metadata for every normal byte. 

We refer to this as the L1 bit-vector CALIFORMS. This has the benefit of fast lookups, but comes at a 12.5% memory overhead.





How do we encode data within dead bytes?
We use a novel cache line based encoding scheme for L1, L2 and beyond.
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The real savings with regards to CALIFORMS come from our L2 sentinel encoding scheme.

How do we achieve this?

First, we compress the regular data in one part of the cache line.

Then, we use the newly carved space to store a header, in which we store the addresses of the blacklisted locations.



How do we encode data within dead bytes?
We use a novel cache line based encoding scheme for L1, L2 and beyond.
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In order to disambiguate between the blacklisted cache lines and the normal ones, we extend each cache line with an additional bit. 

This bit is set to Yes/True for blacklisted cache lines.




How do we encode data within dead bytes?
We use a novel cache line based encoding scheme for L1, L2 and beyond.
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And is set to No/False for non-blacklisted ones.




How do we encode data within dead bytes?
We use a novel cache line based encoding scheme for L1, L2 and beyond.
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131

Presenter
Presentation Notes
This encoding scheme has only a 0.2% memory overhead for a 64B cache line…requiring a cache line to be extend by just a SINGLE bit.

As the size of L1 is small compared to L2, L3 and main memory where we can utilize this encoding scheme…the overall memory overhead is dominated by the 0.2%. 



How was CALIFORMS evaluated?
Emulated BLOC instruction effects on real hardware.

SPEC CPU2006
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We evaluated CALIFORMS on real hardware by emulating the effects of the BLOC instruction. Overall, we found that it incurs MINIMAL performance impact….



How was CALIFORMS evaluated?
Emulated BLOC instruction effects on real hardware.
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Average slowdown < 2%!
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with < 2% runtime overhead for SPEC CPU 2006!



Why is CALIFORMS useful in constrained devices?
It brings memory blacklisting to a new class of devices.

Limited Scope of Changes
Changes are contained to the cache controllers making it portable to any 
architecture.

Memory Savings
Uses dead bytes in already allocated memory with minimal impact & 
reduces memory accesses.
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While performance is certainly a major benefit to CALIFORMS especially in resource constrained devices, the memory savings are perhaps the most significant. 
This is especially critical since as we’ve seen memory is such a premium commodity in microcontrollers.

Moreover, CALIFORMS also addresses the heterogeneity aspect of CPS devices…its changes are portable and limited to cache memory controllers. 
This means CALIFORMS can be easily adapted to multiple systems in an architecture agnostic fashion.
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My contributions to CPS security
An overview of publications

1. YOLO: You Only Live Once
A mitigation that leverages inertia to periodically wipe an attacker from 
the system.

2. PAS: Phantom Address Space
An architectural primitive for diversified execution.

3. CALIFORMS: Cache Line Formats
A mechanism for inline fine-grained metadata storage.
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Resource constraints and economic pressures in the CPS space are at ends with the goal of security.

However…as cyber-physical systems further integrate into the many facets of daily life, finding ways of ensuring CPS remain secure and free of harm will no doubt become an even more pressing concern.

Through my contributions, I’ve shown that security can thus indeed be efficiently integrated into resource constrained devices. 




Security can be efficiently integrated by 
leveraging fundamental physical properties, & 
tailoring and extending age-old abstractions in 

computing.
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Thesis Statement
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Physical properties are useful for enforcing security, and there are benefits to periodically re-evaluating fundamental computing abstractions to tailor them to new application domains.



Why are my contributions well suited for 
constrained devices?
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Minimal Performance Impact
Minimal impact on workload execution.

Memory Savings
Cut down on resource duplication.

Cost Savings
Minimize on redundant resources to maintain system security.

Limited Scope of Changes
Changes are contained to be portable to any architecture.

Presenter
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I’ve shown that by following this two-pronged approach:

Techniques can be developed that significantly save on both memory and cost……..

AND that it is possible to do so without sacrificing performance or modularity.



Many thanks to all I’ve collaborated with!

138

Mohamed, Hiroshi, Kanad, Evgeny, Koustubha, 
Hidenori, Vasileios, Junfeng

Presenter
Presentation Notes
With that, I’d like to thank the many collaborators I’ve had the pleasure of working with for all of these projects. 

To put it plainly, without them, none of these contributions would have been possible. 



Special thanks to my advisor!
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And of course, many special thanks to my advisor, Simha, who’s taken the time to nurture and guide me through this long journey. 
I would not have made it this far without his support and encouragement!
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And with that I’m probably OUTATIME.
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An overview of publications
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1. YOLO: You Only Live Once
A mitigation that leverages inertia to periodically wipe an attacker 
from a system.

2. PAS: Phantom Address Space
An architectural primitive for diversified execution.

3. CALIFORMS: Cache Line Formats
A mechanism for fine-grained inline metadata storage.
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I’ll open it up for questions.
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