
A Story of Under-C
Discovery and

Adventure
A look at Memory Safety

Miguel A. Arroyo
@miguelaarroyo12

Presenter
Presentation Notes
Hi, everyone!

Today, we’ll be taking a look at memory safety. Where’s it’s been, what the state of the art is like, and where it’s going.

The Evolution of Memory Safety

Presenter
Presentation Notes
Let’s dive right into it!
We begin by discussing a bit about the origins of this security issue known as memory safety.

The Evolution of Memory Safety
The Morris Worm (1988)

Reference: Hilarie Orman - The Morris Worm: A Fifteen-Year Perspective

Presenter
Presentation Notes
Memory safety, and general computer security, all really started to catch people’s attention way back in the late 80s.

The Morris Worm was the first “virus” to hit the internet (or ARPANET as it was known in those days).
It caused a disruption on a scale never seen before.

It all started as an educational exercise by Robert Morris when he was a graduate student. It was simply an attempt to highlight security flaws in the systems of the time.
While it was benign in its intent, Robert Morris’s Worm resulted in the first felony conviction in the US under the 1986 Computer Fraud and Abuse Act.

The worm worked by exploiting vulnerabilities in various Unix programs.
In fact, this is one of the first well-known programs that exploited buffer overflow vulnerabilities.

https://www.cs.umd.edu/class/fall2019/cmsc818O/papers/morris-worm.pdf

The Evolution of Memory Safety
Heartbleed (2014)

Reference: Durumeric et al. - The Matter of Heartbleed

Presenter
Presentation Notes
Fast-forward to 2014...not too long ago... You probably all remember Heartbleed.
While not a “virus” or exploit per say, this vulnerability had serious repercussions. To this day there are still some odd 90k servers on the internet that remain vulnerable.
Heartbleed made what were otherwise “secure” cryptographic protocols...mute...alllowing for stealing cryptographic secrets used to secure the Internet.

What was the vulnerability?...well...it was not much different than what was used in the Morris worm...26 years EARLIER!.

https://jhalderm.com/pub/papers/heartbleed-imc14.pdf

The Evolution of Memory Safety
Heartbleed (2014)

Source: https://xkcd.com/1354/

Presenter
Presentation Notes
I think XKCD has the best explanation for what a memory read/leak vulnerability such as Heartbleed is.

You have a server where you request a message of a specific length.
Because the length ISN’t checked the attacker asks for more data than what is normal. (As shown in the second panel)

https://xkcd.com/1354/

The Evolution of Memory Safety
Heartbleed (2014)

Source: https://xkcd.com/1354/

Presenter
Presentation Notes
This allows the requester (in this case the attacker) to read past the original message by tricking the server into leaking information that they shouldn’t have access to.

https://xkcd.com/1354/

The Evolution of Memory Safety

Presenter
Presentation Notes
I bring up these two well known security stories for a reason.

While these events are spread apart by over two decades worth of technological advances....

The Evolution of Memory Safety

The fundamental vulnerabilities have remained the same!

Presenter
Presentation Notes
The fundamental vulnerabilities across time have remained the same.

Software is Unsafe

Presenter
Presentation Notes
This mainly boils down to the fact that low-level languages (such as C/C++), which are unsafe, still remain incredibly popular (shown in Light Blue and Orange).
Perhaps the biggest reason why this topic of memory safety remains relevant is that most of the critical software that exists today is written in C/C++.

Software is Unsafe

Presenter
Presentation Notes
Low-level languages (like C/C++) trade type safety and memory safety for performance which in many domains is critical.
And with great performance comes great memory responsibility. As many of you are aware, it can be quite easy to shoot yourself in the foot.

11

Google OSS-Fuzz bugs from 2016-
2018.

Ref: https://security.googleblog.com/2018/11/a-new-chapter-for-oss-
fuzz.html

Microsoft Product CVEs

Prevalence of Memory Safety Vulns

Ref: Matt Miller, Microsoft Security Response Center (MSRC) - BlueHat 2019

Presenter
Presentation Notes
To put into context just HOW COMMON these threats are, consider that 70% of all CVEs in Microsoft products each year are memory safety related.
Open source software doesn’t fare much better. With over 29% of bugs found by Google’s OSS-Fuzz being memory safety related.

https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html
https://github.com/microsoft/MSRC-Security-Research

12

ATTACKERS

MEMORY SAFETY

Presenter
Presentation Notes
What has made and continues to make the issue so PROMINENT is that attackers LOVE memory safety vulnerabilities.

13

Attackers Prefer Memory Safety Vulns

Microsoft Product Exploits

Reference: Matt Miller, Microsoft Security Response Center (MSRC) - BlueHat 2019

Presenter
Presentation Notes
Data about CVEs EXPLOITED in Microsoft products show that the OVERWHELMING MAJORITY are memory safety related!

https://github.com/microsoft/MSRC-Security-Research

What is Memory Safety?

Presenter
Presentation Notes
Up until now I’ve kept talking about this problem.
But just what is memory safety really?...
Let me describe a simple formalization...

Reference: https://hacks.mozilla.org/2019/01/fearless-security-memory-safety/

What is Memory Safety?

typedef struct {
char a;
double b;
char c[8];
void (*fp)();

} A_t;

A_t *A1 = malloc(
sizeof(A_t));

free(A1);

A_t *A2 = malloc(

sizeof(A_t));

Presenter
Presentation Notes
Consider the following C code.
Here we have a struct definition on the left (A_t) and a set of heap allocations on the right.

Formally we can break down memory safety into two components...

https://hacks.mozilla.org/2019/01/fearless-security-memory-safety/

What is Memory Safety?

char c[8];
double b;
char a;

void (*fp)();

A1

(1) Spatial
eg. Overflows

Bounds

Presenter
Presentation Notes
The first is the spatial component.

For an allocation, this means knowing it’s layout or bounds.

The typical terms you hear of stack/heap overflow etc fit into this category.

What is Memory Safety?

char c[8];
double b;
char a;

void (*fp)();

A1

free(A1);

A2

Time

char c[8];
double b;
char a;

void (*fp)();

(1) Spatial
eg. Overflows

(2) Temporal
eg. use-after-free

Bounds

Presenter
Presentation Notes
The second component is the temporal aspect.

This amounts to knowing when/where an allocation is valid.

These are your dangling pointers, use-after-free, etc.

Why is Memory Safety
still a problem?

Presenter
Presentation Notes
With the background out of the way, some of you might be wondering if memory safety can be described so simply, why is it still a problem?
Why haven’t we “solved it”?

Well, to a large degree we can argue that we’ve “partially solved it.”

There are safe languages that provide memory safety and type safety like, eg. Java, Python, etc.

Why is Memory Safety still a problem?

Performance
Overheads

Costly
Implementation

Compatibility

Defenses suffer from

Reference: WarGames in memory: shall we play a game?

Presenter
Presentation Notes
There are many defense mechanisms that have been researched and proposed for low-level languages like C/C++.
However, none have really seen widespread use except for a select few: ASLR, DEP, Canaries, and most recently different forms of CFI.

Without getting into too many exact details, many other defenses have tended to fail due to: (1) high performance overhead (2) costly implementation (3) lack of compatibility with existing (ie. legacy) code bases.

http://nebelwelt.net/blog/2013/0312-wargames-in-memory-shall-we-play-a-game.html

The Security Cat & Mouse Game

Presenter
Presentation Notes
It is not to say that there hasn’t been progress on memory safety.
It’s just that it’s turned into a cat & mouse game…
Let me put it into context for you...

Reference:Mohamed Tarek Ibn Ziad @ shorturl.at/muJKO

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

1997

Non
Executable

Stack

1998

Heap
Overflows

2000

Format
String

2002

Info. Leak

2004

Heap
Spraying

2007

ROP

2013

JIT-ROP

1997

Ret2Libc

2016

DOP
1996

Smashing
the stack

1998

Stack
Canaries

2000

Heap
Mitigations

2015

COOP

2001

Format
Guard

NX-bit

2003

2001

ASLR

2003

Point
Guard

2005

CFI

2007

Shadow
Stack

Instruction
Set

Random.

2003

2007

Heap Feng
Shui

2008

Code
Divers.

Code
Pointer

Integrity

2015

XnR

Vtable
Protection

Runtime
Divers.:
Shuffler

2016

2014

Cryptogra
phic-CFI2015

ARM
PAC2018

Isomeron

2015

2016

Non-Control
Data Attacks 2008

2019

PAIRS

JOP2011 SROP2016 BOP2019

Timeline

Presenter
Presentation Notes
Here we have a timeline, courtesy of my friend Mohamed, which highlights fundamental attacks/defenses throughout the years. (SIDENOTE: I encourage you guys to checkout his presentation linked below which has a deep dive into memory safety defenses.)

This timeline accurately captures just how attackers and defenders have kept on moving the goalposts on each other.

Most importantly, it highlights how attackers keep finding new ways of exploiting the same fundamental flaws since defenses haven’t been comprehensive enough (due to the issues discussed previously).

To understand how attacker’s have managed to bypass all the defense mechanisms that have been developed, we need to better understand the steps that they take at a more fundamental level.

https://www.cs.columbia.edu/%7Emtarek
http://shorturl.at/muJKO

The Memory Attack Model

Reference: Szekeres et al.
SoK: Eternal War in Memory

Presenter
Presentation Notes
This “Memory Attack Model” by Szekeres et al. summarizes this well.
In fact, I encourage everyone to read their paper as it is very accessible to anyone with an appreciation of security.

https://people.eecs.berkeley.edu/%7Edawnsong/papers/Oakland13-SoK-CR.pdf

The Memory Attack Model

Reference: Szekeres et al.
SoK: Eternal War in Memory

Presenter
Presentation Notes
Essentially, this flow diagram describes all the ways in which a memory safety issue can be leveraged by an attacker leading to different classes of exploits.
Let’s take a closer look...

https://people.eecs.berkeley.edu/%7Edawnsong/papers/Oakland13-SoK-CR.pdf

The Memory Attack Model

Information
Leak

Code
Corruption

Control-Flow
Hijack Data-only

Presenter
Presentation Notes
Now unlike the underlying memory safety flaws, the level of sophistication to mount these different categories of attacks has greatly increased over the past few decades.
In other words, the defenses that have been adopted have raised the bar for the attacker.

The Memory Attack Model

Information
Leak

Code
Corruption

Control-Flow
Hijack Data-only

Defense Complexity

Presenter
Presentation Notes
Ultimately, the complexity of “partial” defenses has resulted in this evolutionary ordering of attack techniques.

From a fundamental aspect, some of you may be wondering why defending against one type of attack is more difficult than others if the underlying vulnerability is the same?

At a high-level consider the following:

What is necessary to prevent information leak?
 Knowing what data is sensitive.
What is necessary to prevent code corruption?
Knowing which code regions are supposed to be executable.
What is necessary to prevent control-flow hijack?
Knowing the valid execution paths code should take.
What is necessary to prevent data only attacks?
Knowing flows of data and values of data.

In other words, the level of knowledge required for protection increases, thus making defenses more complex.

The Memory Attack Model

Information
Leak

Code
Corruption

Control-Flow
Hijack Data-only

Defense Complexity

Presenter
Presentation Notes
Today, the state of the art exploitation techniques fall into the data-only category.

How do these work conceptually? Let’s go back to the attack model...

The Memory Attack Model

Reference: Szekeres et al.
SoK: Eternal War in Memory

Presenter
Presentation Notes
Starting from the top…

Let’s say we have some pointer that we can cause to go out of bounds, in other words, a spatial violation. (Steps 1-2)
This allows us to corrupt a data variable, violating the integrity of memory (Steps 3-4)
The program then uses this corrupted data value resulting in chaos (Step 5)

At a high level it seems intuitive enough...

https://people.eecs.berkeley.edu/%7Edawnsong/papers/Oakland13-SoK-CR.pdf

Data-only Attacks
State-of-the-art Exploit Techniques

28

Presenter
Presentation Notes
However, there are quite a few details to carry these attacks out.

This will be the focus of the rest of this talk.

There are two classes of Data-only attacks...

Data-only Attacks
Direct Data Manipulation

Non-Control-Data Attacks Are Realistic Threats
Chen et al. (2005)

● An attacker directly manipulates the target
data to accomplish the malicious goal.

void foo(...) {
...
bool is_admin = false;
...
// Corrupt authenticated
type = packet_read();
...
if (is_admin) {
// do privileged ops
...
}
...

}

Presenter
Presentation Notes
The first is categorized as “Direct Data Manipulation”.
Here, an attacker directly manipulates the target data to accomplish the malicious goal.
It requires the attacker to know the precise memory address of the target non-control-data.

For instance, in the example on the right we have a vulnerable function packet_read() which can directly corrupt the variable is_admin which then can be used enter the if condition.

Ok you might be thinking...that seems like all the stars have to align for it to work.
Sure, it is limited...can we do more?

https://www.cs.purdue.edu/homes/xyzhang/spring07/Papers/data_attack.pdf

Data-only Attacks
Data-Oriented Programming (DOP)

Data-Oriented Programming: On the
Expressiveness of Non-Control Data Attacks
Hu et al. (2016)

● An attacker performs arbitrary
computations in program memory by
chaining the execution of short sequences
of instructions (referred to as gadgets).

Presenter
Presentation Notes
This brings us to the second category of Data-only attacks known as Data-Oriented Programming (or DOP).

DOP allows an attacker to perform arbitrary computations in program memory by chaining the execution of short sequences of instructions (referred to as data-oriented or DOP gadgets).

The idea is to reuse the code in these gadgets for malicious purposes other than the developer’s original intent.

Sounds familiar...

https://huhong-nus.github.io/advanced-DOP/

WE INTERRUPT THIS
PROGRAM...

Presenter
Presentation Notes
For those of you who didn’t catch my first talk on ROP or simply need a refresher let’s quickly look back at ROP or return-oriented programming.

Review
Return-Oriented Programming (ROP)

B

A

G

. . .

@B

@G ret

Stack

Z

ret

https://miguel.arroyo.me/resources

Presenter
Presentation Notes
(FYI the slides for that talk can be found on my site linked on the top right).

Back to ROP, so what we have here is the Control-Flow Graph (or CFG) of a program on the left, and the stack on the right.

In a ROP attack...

https://miguel.arroyo.me/resources

Return-Oriented Programming (ROP)

B

A

G

. . .

@Z

@G ret

Stack

Z

ret

Review

https://miguel.arroyo.me/resources

Presenter
Presentation Notes
We use a memory vulnerability to corrupt a return address on the stack in order to change the control flow of a program.

In this example, we’ve basically made a function Z that was normally considered dead code, be active.

https://miguel.arroyo.me/resources

AND NOW BACK TO
THE SCHEDULED
PROGRAMMING

Presenter
Presentation Notes
Now let’s go back to DOP to understand how much more sophisticated it is.

if (!v)

Data-only Attacks
Data-Oriented Programming (DOP)

B

A

G

. . .

do_loop == 1?if (v)

1

false

do_loop

v

Data
Memory

Presenter
Presentation Notes
Note, that now I’ve augmented the edges of the control-flow graph showing the data dependence.
On the right, we now show the program’s data instead of the stack.
We can see the values of v & do_loop on the right.

As you might imagine, as the data of the program changes, it will traverse the different paths of this graph, all of them are “valid” Control Flows.

Data-only Attacks
Data-Oriented Programming (DOP)

B

A

G

. . .

do_loop == 1?if (v)

if (!v)

1

true

do_loop

v

Data
Memory

Presenter
Presentation Notes
So, if say an attacker is able to corrupt, values in memory, they can modify the path the program takes, all while adhering to valid control-flows.

With this intuition in mind let’s get technical.

1. struct server{int *cur_max, total, typ;} *srv;
2. int quota = MAXCONN; int *size, *type;
3. char buf[MAXLEN];
4. size = &buf[8]; type = &buf[12]
5. ...
6. while (quota--) {
7. readData(sockfd, buf); // stack bof
8. if(*type == NONE) break;
9. if(*type == STREAM)
10. *size = *(srv->cur_max);
11. else {
12. srv->typ = *type;
13. srv->total += *size;
14. } //...(following code skipped)...
15. }

?

37

Data-Oriented Programming
Motivating Example

Source: http://www.ieee-security.org/TC/SP2016/slides/25-4/hu.pdf

1. struct Obj {struct Obj *next; int prop;}
2.
3. void updateList(struct Obj *list, int

addend){
4. for(; list != NULL; list = list->next)
5. list->prop += addend;
6. }

Presenter
Presentation Notes
Here we have a vulnerable server program.
As prerequisite, we have a memory safety vulnerability, in this case a stack buffer overflow in readData().

The attackers goal is to have the code on the left simulate the malicious code on the right.
How do they do that?

http://www.ieee-security.org/TC/SP2016/slides/25-4/hu.pdf

1. struct server{int *cur_max, total, typ;} *srv;
2. int quota = MAXCONN; int *size, *type;
3. char buf[MAXLEN];
4. size = &buf[8]; type = &buf[12]
5. ...
6. while (quota--) {
7. readData(sockfd, buf); // stack bof
8. if(*type == NONE) break;
9. if(*type == STREAM)
10. *size = *(srv->cur_max);
11. else {
12. srv->typ = *type;
13. srv->total += *size;
14. } //...(following code skipped)...
15. }

?

38

Data-Oriented Programming
Motivating Example

Source: http://www.ieee-security.org/TC/SP2016/slides/25-4/hu.pdf

1. struct Obj {struct Obj *next; int prop;}
2.
3. void updateList(struct Obj *list, int

addend){
4. for(; list != NULL; list = list->next)
5. list->prop += addend;
6. }

Presenter
Presentation Notes
Similar to ROP attack, an attacker needs some building blocks.

Highlighted here are some the key building blocks (aka gadgets) of a DOP attack.

Let’s briefly look at one of these gadgets to get an intuition of how things are going to work.

http://www.ieee-security.org/TC/SP2016/slides/25-4/hu.pdf

Load:*size = *(srv->cur_max);
1.mov *(&srv->cur_max), r1
2.mov *(&size), r2
3.mov r1, *(&size)

Memory

39

Data-Oriented Programming
DOP Gadgets

Presenter
Presentation Notes
Here we have a load gadget & its equivalent pseudo-assembly below.

On the right, we have the two memory locations the pseudo-assembly instructions 1 & 2 load from.

It’s easy to see how this is a load (ie. the instructions move memory into “registers”).

Memory

40

Data-Oriented Programming
DOP Gadgets

Load:*size = *(srv->cur_max);
1.mov *(&srv->cur_max), r1
2.mov *(&size), r2
3.mov r1, *(&size)

Presenter
Presentation Notes
At instruction 3, the memory in blue is loaded to where the gray box used to be.

Other gadgets, work in a similar manner, always operating in memory.

Memory

41

Data-Oriented Programming
DOP Gadgets

Load:*size = *(srv->cur_max);
1.mov *(&srv->cur_max), r1
2.mov *(&size), r2
3.mov r1, *(&size)A Virtual Machine in
Memory!

Presenter
Presentation Notes
In other words, what DOP does is emulate another machine in memory, not dissimilar to say how any other emulator works.

With this intuition in mind, let’s go back to the code.

5 list->prop += addend;

buf[] type size quota srv stack

cur_
max

total typ

15 }

Memory space

list
addend

?simulate

heap next prop next prop

6 while (quota--) { 4 for(; list != NULL; list = list->next)
7 readData(sockfd, buf);
8 if(*type == NONE) break;
9 if(*type == STREAM)
10 *size = *(srv->cur_max);
11 else {
12 srv->typ = *type;
13 srv->total += *size;
14 }

vulnerable program

malicious computation

Source: http://www.ieee-
security.org/TC/SP2016/
slides/25-4/hu.pdf

42

Motivating Example

Presenter
Presentation Notes
Here the purple arrow on the left will mark our current instruction where we begin at the gadget dispatcher.

The box below represents the memory space.

In dark gray is the buf[] followed by the stack variables. This is the region we will overflow.

In white are the memory addresses on the heap.

http://www.ieee-security.org/TC/SP2016/slides/25-4/hu.pdf

5 list->prop += addend;

buf[] type size quota srv stack

cur_
max

total typ

15 }

Memory space

list
addend

?simulate

heap next prop next prop

6 while (quota--) { 4 for(; list != NULL; list = list->next)
7 readData(sockfd, buf);
8 if(*type == NONE) break;
9 if(*type == STREAM)
10 *size = *(srv->cur_max);
11 else {
12 srv->typ = *type;
13 srv->total += *size;
14 }

vulnerable program

malicious computation

43

Motivating Example

Presenter
Presentation Notes
The overflow happens here in readData().

We overflow the buffer with addresses such that the stack variables now point to where the red arrows indicate.
(eg. type->list, size->addend, srv->size)

buf[] type size quota srv stack

cur_
max

total typ

readData(sockfd, buf); 5 list->prop += addend;
if(*type == NONE) break;

15 }

Memory space

list
addend

?simulate

heap next prop next prop

6 while (quota--) { 4 for(; list != NULL; list = list->next)
7
8
9 if(*type == STREAM)
10 *size = *(srv->cur_max);
11 else {
12 srv->typ = *type;
13 srv->total += *size;
14 }

vulnerable program

malicious computation

44

Motivating Example

Presenter
Presentation Notes
Here we reach our first DOP gadget, a conditional. We see that *type aka list does not equal NULL so we jump to the else branch.

buf[] type size quota srv stack

cur_
max

total typ

readData(sockfd, buf); 5 list->prop += addend;
if(*type == NONE) break;

15 }

Memory space

list
addend

?simulate

heap next prop next prop

6 while (quota--) { 4 for(; list != NULL; list = list->next)
7
8
9 if(*type == STREAM)
10 *size = *(srv->cur_max);
11 else {
12 srv->typ = *type;
13 srv->total += *size;
14 }

vulnerable program

malicious computation

45

Motivating Example

cur_
max total typ

Presenter
Presentation Notes
Here srv is pointing back to size, because it wants to point to itself. but due to the dereference of ->typ we set it like so.

buf[] type size quota srv stack

cur_
max

total typ

readData(sockfd, buf); 5 list->prop += addend;
if(*type == NONE) break;

15 }

Memory space

list
addend

?simulate

6 while (quota--) { 4 for(; list != NULL; list = list->next)
7
8
9 if(*type == STREAM)
10 *size = *(srv->cur_max);
11 else {
12 srv->typ = *type;
13 srv->total += *size;
14 }

vulnerable program

malicious computation

heap next prop next prop
46

Motivating Example

Presenter
Presentation Notes
Now srv is set to (list->next)

buf[] type size quota srv stack

cur_
max

total typ

Memory space

addend
list

cur_
max

next

total typ

heap prop next prop

readData(sockfd, buf); 5 list->prop += addend;
if(*type == NONE) break;

srv->total += *size;

6 while (quota--) { 4 for(; list != NULL; list = list->next)
7
8
9 if(*type == STREAM)
10 *size = *(srv->cur_max);
11 else {
12 srv->typ = *type;
13
14 }
15 }

?simulate
vulnerable program

malicious computation

47

Motivating Example

list

Presenter
Presentation Notes
because srv points to list->next, we can see that dereferencing ->total will actually access prop, which is exactly what we want.

buf[] type size quota srv stack

cur_
max

total typ

readData(sockfd, buf); 5 list->prop += addend;
if(*type == NONE) break;

srv->total += *size;

6 while (quota--) { 4 for(; list != NULL; list = list->next)
7
8
9 if(*type == STREAM)
10 *size = *(srv->cur_max);
11 else {
12 srv->typ = *type;
13
14 }
15 }

Memory space

list
addend

?simulate
vulnerable program

malicious computation

heap next prop next prop
48

Motivating Example

Presenter
Presentation Notes
we continue in a similar fashion for the rest of the computation...

buf[] type size quota srv stack

cur_
max

total typ

readData(sockfd, buf); 5 list->prop += addend;
if(*type == NONE) break;

srv->total += *size;

6 while (quota--) { 4 for(; list != NULL; list = list->next)
7
8
9 if(*type == STREAM)
10 *size = *(srv->cur_max);
11 else {
12 srv->typ = *type;
13
14 }
15 }

Memory space

list
addend

?simulate
vulnerable program

malicious computation

STREAM

heap next prop next prop
49

Motivating Example

buf[] type size quota srv stack

cur_
max

total typ

readData(sockfd, buf); 5 list->prop += addend;
if(*type == NONE) break;

srv->total += *size;

6 while (quota--) { 4 for(; list != NULL; list = list->next)
7
8
9 if(*type == STREAM)
10 *size = *(srv->cur_max);
11 else {
12 srv->typ = *type;
13
14 }
15 }

Memory space

list
addend

?simulate
vulnerable program

malicious computation

STREAM

heap next prop next prop
50

Motivating Example

buf[] type size quota srv stack

cur_
max

total typ

readData(sockfd, buf); 5 list->prop += addend;
if(*type == NONE) break;

srv->total += *size;

6 while (quota--) { 4 for(; list != NULL; list = list->next)
7
8
9 if(*type == STREAM)
10 *size = *(srv->cur_max);
11 else {
12 srv->typ = *type;
13
14 }
15 }

Memory space

list
addend

?simulate
vulnerable program

malicious computation

STREAM

heap next prop next prop
51

Motivating Example

buf[] type size quota srv stack

cur_
max

total typ

readData(sockfd, buf); 5 list->prop += addend;
if(*type == NONE) break;
if(*type == STREAM)

*size = *(srv->cur_max);

srv->total += *size;

6 while (quota--) { 4 for(; list != NULL; list = list->next)
7
8
9
10
11 else {
12 srv->typ = *type;
13
14 }
15 }

Memory space

list
addend

?simulate
vulnerable program

malicious computation

STREAM

heap next prop next prop
52

Motivating Example

buf[] type size quota srv stack

cur_
max

total typ

readData(sockfd, buf); 5 list->prop += addend;
if(*type == NONE) break;
if(*type == STREAM)

*size = *(srv->cur_max);

srv->total += *size;

6 while (quota--) { 4 for(; list != NULL; list = list->next)
7
8
9
10
11 else {
12 srv->typ = *type;
13
14 }
15 }

Memory space

list
addendSTREAM

simulate

heap next prop next prop

vulnerable program

malicious computation

53

Motivating Example

Presenter
Presentation Notes
and finally we successfully simulate the malicious code.

DOP Gadget Dispatcher

loop select

1 2 3

1 2 3

1 2 3

54

Chain DOP gadgets legitimately

● loop - repeatedly invoke
gadgets

● select - selectively activate
gadgets

iter 1

iter 2

iter 3

6. while (quota--) { // loop
7. readData(sockfd, buf); // selector
8. if(*type == NONE) break;
9. if(*type == STREAM) *size = *(srv->cur_max);
10. else { srv->typ = *type;srv->total += *size; }
11. }

Presenter
Presentation Notes
From the example, you might have already figured out that the while loop and readData() are particularly important.

In combination, these two are called the Gadget Dispatcher.
This Dispatcher is what allows the attacker to chain DOP gadgets that conform to the programs legitimate CFG.

It involves two components: a loop & a selector.

The loop allows us to repeatedly invoke gadgets, while the selector allows us to activate sets of gadgets in each iteration.

MinDOP Language

55

Semantics Statements in C Data-Oriented
Gadgets in DOP

arithmetic / logical a op b *p op *q

assignment a = b *p = *q

load a = *b *p = **q

store *a = b **p = *q

jump goto L vpc = &input

conditional jump if (a) goto L vpc &input if *p

p - &a; q - &b; op - any arithmetic / logical; vpc - virtual input
pointer

Presenter
Presentation Notes
In the paper, the authors prove that DOP is in fact Turing complete much like ROP.

Here is a snapshot of the Minimal DOP language which they present.

There are 6 kinds of virtual instructions, each operating on virtual register operands.
The first four virtual instructions include arithmetic /logical calculation, assignment, load and store operations.
The last two virtual operations, namely conditional and unconditional jumps, allow the implementation of control structures in a MINDOP virtual program.

Much like ROP, each virtual operation is simulated by real instruction sequences available in the vulnerable program.

DOP Demo
Minimal Vulnerability + Exploits

https://github.com/mayanez/min-dop

Extra: DOP Gadget Compiler
https://github.com/mayanez/llvm-clang-passes/tree/master/llvm/DOP-Gadgets

Presenter
Presentation Notes
With the conceptual stuff out of the way, we can dive into some code that I’ve set up for you all to play around with.

It can be found in the link above so definitely check it out after the talk if you’re interested.

As an extra, I’ve also updated the DOP Gadget Compiler originally included with the Hu et al paper to LLVM 8+ so you can find gadgets in real-world programs.

https://github.com/mayanez/min-dop
https://github.com/mayanez/llvm-clang-passes/tree/master/llvm/DOP-Gadgets

DOP Demo
Minimal Vulnerability + Exploits

Vulnerable
Server

Python API
Wrapper

Network
Socket

vuln_srv.pyvuln_srv.c

DOP Exploit
Wrapper

exploit.py

General Architecture

Presenter
Presentation Notes
Let me just give you a brief explanation of the various things you’ll find in the repo.

You’ll find a vulnerable server written in C. It’s pretty basic and uses a simple little binary protocol over a regular network socket. It’s riddled with comments and should be fairly easy to follow.
I’ve provided a little Python API wrapper to interface with the server to make the code easier to read and follow.
Lastly, there’s the actual exploit code. There are a number of different modes and features so checkout the README.

I’ll cover a few more minor technical details during the demo (eg. use of GDB python to find symbol addresses for reproducibility).

DOP Demo
Leaking the SECRET

Steps
1. Find address holding SECRET.

2. Use DOP Load to fetch SECRET.

3. Exfiltrate SECRET.

Presenter
Presentation Notes
For the purposes of this presentation, I’ll talk about 1 mode which leaks a SECRET variable.

The exploit involves 3 steps.
Finding the address holding the SECRET.
Using a DOP load to fetch the SECRET.
Finally exfiltrating the SECRET back through the network.

DOP Demo
Leaking the SECRET

void do_serve(int sockfd) {...
// Memory Write Safety Violation
// Corrupts variables
// (ie. p_type, p_srv, etc)
readInData(g_clfd, sbuf);
...
else if (*p_type == TYPE_GET) {

printf("[do_serve] TYPE_GET\n");
getG_A(g_clfd);

}...
else if (*p_type == TYPE_LOAD) {

printf("[do_serve] TYPE_LOAD\n");
// DOP: load

*p_g_d = **(p_srv->pp_b);
}...}

vuln_srv.c

Presenter
Presentation Notes
This is the relevant bit of vulnerable code you’ll need to focus your attention on in vuln_srv.c

Much like in the example I went through, you’ll have a vulnerable readInData function and a DOP load gadget you’ll use.

DOP Demo
Leaking the SECRET

def dop_exfiltrate(self):
...

Equivalent: g_a = **g_pp_secret
self.gadget_load(b, self._g_pp_secret__offset_base,

self._g_a__offset_base)

Equivalent: return g_a
secret = self.vuln_srv.send_get()
if secret == ExploitLib.SECRET: # SECRET = 0x1337

return True
else:

return False

exploit.py

Presenter
Presentation Notes
The actual Python code that exploits the code is quite straight forward given the abstractions provided by the wrappers.

The SECRET (0x1337) is stored in a global variable named `g_pp_secret`.
We will use the DOP load to place it into another global variable `g_a`.

We will then trigger the servers “GET” type request which directly reads from g_a.

The equivalent C statements for this process are highlighted by the comments in pink.

NOTE: There is no need to disable ASLR for any of the exploits to work as there is a built-in primitive to leak a base address within the program’s address space.

DOP Demo
Leaking the SECRET

Presenter
Presentation Notes
Now for the live DEMO just to give you some sense of this works for when you give it a try yourselves.

Keep on Learning (More Data Attacks)

● Block-Oriented Programming (BOP)
○ An evolution of the original DOP technique.
○ [Arxiv:1805.04767] Block Oriented Programming: Automating Data-Only

Attacks

● Survey on general Data-only attacks
○ [Arxiv:1902.08359] Exploitation Techniques and Defenses for Data-

Oriented Attacks
■ Also includes discussion on defenses!

Presenter
Presentation Notes
The fun doesn’t stop with DOP. Here are some additional resources on Data attacks for you to keep learning after the talk.

I’ve also included as many useful references as I could scattered throughout the presentation if you haven’t noticed...definitely take a look at them.

https://arxiv.org/abs/1805.04767
https://arxiv.org/abs/1902.08359

Memory Safety Going Forward

Presenter
Presentation Notes
To conclude the talk, I’ll briefly touch on the state memory safety going forward.

● Hardware
○ ARMv8.3 Pointer Authentication (PAC)

Memory Safety Going Forward
Defenses

Presenter
Presentation Notes
One of the most promising defenses by far for a majority of systems is ARM’s Pointer Authentication or PAC.
(It’s currently only deployed Apple devices w/ A12+ chips.) Time will tell if it will be as robust as we expect.

PAC aims to encrypting pointers which thwarts most exploit techniques and gets as close to true memory safety as we’ve gotten thus far.
Control-flow attacks, DOP attacks, and many other data-oriented attacks rely on the manipulation of vulnerable pointers. Consequently, ensuring pointer integrity will prevent these attacks.
Put simply, if you can’t corrupt pointers, then you fail at step 1 in the attack model previously discussed.

Let’s take a very cursory look at how it works.

https://events.static.linuxfound.org/sites/events/files/slides/slides_23.pdf

● Hardware
○ ARMv8.3 Pointer Authentication (PAC)

Memory Safety Going Forward
Defenses

AddressPAC

48-bits16-bits

● Pointer tagging via bits normally unused for virtual addressing.

Presenter
Presentation Notes
It works by tagging pointers with an authentication code in higher order bits of the address space which are typically unused.
Usually, only 48-bits of the virtual address (VA) are used leaving the remaining 16-bits to be used for other purposes.

https://events.static.linuxfound.org/sites/events/files/slides/slides_23.pdf

● Hardware
○ ARMv8.3 Pointer Authentication (PAC)

Memory Safety Going Forward
Defenses

Pointer

Context

Key

P PAC

● PAC algorithm P is currently QARMA.

Presenter
Presentation Notes
The PAC is a message authentication code (MAC) calculated over the pointer value with a modifier/contex as the tweak.
Different combinations of key and context pairs allow domain separation among different classes of authenticated pointers.

This prevents authenticated pointer values from being arbitrarily interchangeable with one another.
Preventing, for example, attacks from using a function pointer as a return address, or vice versa.

https://events.static.linuxfound.org/sites/events/files/slides/slides_23.pdf

● Hardware
○ ARMv8.3 Pointer Authentication (PAC)
○ Cryptographic CFI (CCFI)

Memory Safety Going Forward
Defenses

Presenter
Presentation Notes
It’s worth noting that the idea of using of MACs to protect pointers at runtime is not new to ARM’s PAC.

Cryptographic CFI (CCFI), developed at Stanford, uses MACs to protect control-flow data such as return addresses, function pointers, and vtable pointers.

The difference is mainly in the integration with the hardware.
Unlike ARM PAC, CCFI uses x86 hardware-accelerated AES-NI for speeding up MAC calculation. Runtime software checks are then used to compare the calculated MAC to a reference value.
PAC, on the other hand, uses either QARMA or a manufacturer-specific MAC, and performs the MAC comparison in hardware.

https://events.static.linuxfound.org/sites/events/files/slides/slides_23.pdf
http://www.scs.stanford.edu/ccfi/

● Hardware
○ ARMv8.3 Pointer Authentication (PAC)
○ Cryptographic CFI (CCFI)

● Languages

○ Rust

■ See Understanding Memory and Thread Safety Practices and Issues

in Real-World Rust Programs

Memory Safety Going Forward
Defenses

Presenter
Presentation Notes
Other than hardware, on the languages front there is Rust which I’m sure many have heard about.
The reason it’s interesting is that it has reasonable performance overheads while providing strong memory safety guarantees.
But it’s still unclear just how much of a benefit it will bring.
(Checkout the paper linked for a good discussion on the topic).

https://events.static.linuxfound.org/sites/events/files/slides/slides_23.pdf
http://www.scs.stanford.edu/ccfi/
https://cseweb.ucsd.edu/%7Eyiying/RustStudy-PLDI20.pdf

● Hardware
○ ARMv8.3 Pointer Authentication (PAC)
○ Cryptographic CFI (CCFI)

● Languages

○ Rust

■ See Understanding Memory and Thread Safety Practices and Issues

in Real-World Rust Programs
● Compilers

○ Sanitizers
■ See [Arxiv:1806.04355] SoK: Sanitizing for Security

Memory Safety Going Forward
Defenses

Presenter
Presentation Notes
Finally, in order to help eliminate memory safety bugs, sanitizers + fuzzers have been shown to be a promising approach to identifying and eradicating the troublesome bugs.
We already had a good workshop on Fuzzers, maybe a good follow up talk is on Sanitizers and how they work.

https://events.static.linuxfound.org/sites/events/files/slides/slides_23.pdf
http://www.scs.stanford.edu/ccfi/
https://cseweb.ucsd.edu/%7Eyiying/RustStudy-PLDI20.pdf
https://arxiv.org/abs/1806.04355

Memory Safety Going Forward
Defenses

Presenter
Presentation Notes
In conclusion, memory safety is going places and there has been great progress in the last few years.

Memory Safety Going Forward
Defenses

Presenter
Presentation Notes
In the post Meltdown and Spectre world, we must be careful as we tread forward.
Many of the memory safety defenses may not cover hardware side-channels which can be used to render them moot.

This a topic worth devoting an entire presentation to, so I won’t touch on it now.

https://meltdownattack.com/
https://meltdownattack.com/

Memory Safety Going Forward
Defenses

Check out: Popping Calc with Hardware Vulnerabilities

Presenter
Presentation Notes
But I’ll point you to this talk from earlier this year for a good relatable example of using hardware side-channels to bypass mitigations in modern browsers.

https://meltdownattack.com/
https://meltdownattack.com/
https://www.youtube.com/watch?v=ugZzQvXUTIk
https://www.youtube.com/watch?v=ugZzQvXUTIk

Memory Safety Going Forward
Defenses

Comprehensive Composable

Presenter
Presentation Notes
….Going forward we should keep in mind to develop defenses that are either (1) comprehensive enough to protect against threats from both software and hardware (2) and are composable with each other defenses.

Questions?
Slides & Code can be found on my site:

https://miguel.arroyo.me/

@miguelaarroyo12

Presenter
Presentation Notes
With that are there any questions?

The code is already available on GitHub and I will post the slides on my site shortly.

https://miguel.arroyo.me/

	A Story of Under-C Discovery and Adventure
	The Evolution of Memory Safety
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Prevalence of Memory Safety Vulns
	Slide Number 12
	Attackers Prefer Memory Safety Vulns
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Data-only Attacks
State-of-the-art Exploit Techniques
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Keep on Learning (More Data Attacks)
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Questions?

